Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmacytoid dendritic cells in immunity

Abstract

Human and mouse plasmacytoid dendritic cells have been shown to correspond to a specialized cell population that produces large amounts of type I interferons in response to viruses, the so-called natural interferon–producing cells. As a result, intensive investigation is now focused on the potential functions of plasmacytoid dendritic cells in both innate and adaptive immunity. Here we review recent progress on the characterization of plasmacytoid dendritic cell origin, development, migration and function in immunity and tolerance, as well as their effect on human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of pDCs.
Figure 2: Morphology of pDCs.
Figure 3: The immunostimulatory functions of activated pDCs.
Figure 4: The tolerogenic functions of pDCs.

Similar content being viewed by others

References

  1. Lennert, K. & Remmele, W. [Karyometric research on lymph node cells in man. I. Germinoblasts, lymphoblasts & lymphocytes.]. Acta Haematol. 19, 99–113 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Facchetti, F., Vermi, W., Mason, D. & Colonna, M. The plasmacytoid monocyte/interferon producing cells. Virchows Arch. 443, 703–717 (2003).

    Article  PubMed  Google Scholar 

  3. Trinchieri, G., Santoli, D., Dee, R.R. & Knowles, B.B. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. J. Exp. Med. 147, 1299–1313 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Perussia, B., Fanning, V. & Trinchieri, G. A leukocyte subset bearing HLA-DR antigens is responsible for in vitro α interferon production in response to viruses. Nat. Immunol. Cell Growth Regul. 4, 120–137 (1985).

    CAS  Google Scholar 

  5. Abb, J., Abb, H. & Deinhardt, F. Phenotype of human α-interferon producing leucocytes identified by monoclonal antibodies. Clin. Exp. Immunol. 52, 179–184 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ronnblom, L., Ramstedt, U. & Alm, G.V. Properties of human natural interferon-producing cells stimulated by tumor cell lines. Eur. J. Immunol. 13, 471–476 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Chehimi, J. et al. Dendritic cells and IFN-α-producing cells are two functionally distinct non-B, non-monocytic HLA-DR+ cell subsets in human peripheral blood. Immunology 68, 488–490 (1989).

    PubMed Central  Google Scholar 

  8. Feldman, M. & Fitzgerald-Bocarsly, P. Sequential enrichment and immunocytochemical visualization of human interferon-α-producing cells. J. Interferon Res. 10, 435–446 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. O'Doherty, U. et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487–493 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rissoan, M.C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Bave, U. et al. FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J. Immunol. 171, 3296–3302 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J. Exp. Med. 194, 1823–1834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dzionek, A. et al. Plasmacytoid dendritic cells: from specific surface markers to specific cellular functions. Hum. Immunol. 63, 1133–1148 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Chaperot, L. et al. Leukemic plasmacytoid dendritic cells share phenotypic and functional features with their normal counterparts. Eur. J. Immunol. 34, 418–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Nakano, H., Yanagita, M. & Gunn, M.D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194, 1171–1178 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Bjorck, P. Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice. Blood 98, 3520–3526 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. O'Keeffe, M. et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J. Exp. Med. 196, 1307–1319 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asselin-Paturel, C., Brizard, G., Pin, J.J., Briere, F. & Trinchieri, G. Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J. Immunol. 171, 6466–6477 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Blasius, A. et al. A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-α. Blood 103, 4201–4206 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Barchet, W. et al. Dendritic cells respond to Influenza virus through TLR7- and PKR-independent pathways. Eur. J. Immunol. (in the press).

  26. Dalod, M. et al. Interferon α/β and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195, 517–528 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blom, B., Ho, S., Antonenko, S. & Liu, Y.J. Generation of interferon α-producing predendritic cell (Pre-DC)2 from human CD34+ hematopoietic stem cells. J. Exp. Med. 192, 1785–1796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, W. et al. Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors. Blood 103, 2547–2553 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953–958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brawand, P. et al. Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs. J. Immunol. 169, 6711–6719 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Pulendran, B. et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol. 165, 566–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Arpinati, M., Green, C.L., Heimfeld, S., Heuser, J.E. & Anasetti, C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95, 2484–2490 (2000).

    CAS  PubMed  Google Scholar 

  33. Rissoan, M.C. et al. Subtractive hybridization reveals the expression of immunoglobulin-like transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells. Blood 100, 3295–3303 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Corcoran, L. et al. The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J. Immunol. 170, 4926–4932 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Spits, H., Couwenberg, F., Bakker, A.Q., Weijer, K. & Uittenbogaart, C.H. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775–1784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karsunky, H., Merad, M., Cozzio, A., Weissman, I.L. & Manz, M.G. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J. Exp. Med. 198, 305–313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamura, T. & Ozato, K. ICSBP/IRF-8: its regulatory roles in the development of myeloid cells. J. Interferon Cytokine Res. 22, 145–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Aliberti, J. et al. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101, 305–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. del Hoyo, G.M. et al. Characterization of a common precursor population for dendritic cells. Nature 415, 1043–1047 (2002).

    Article  PubMed  Google Scholar 

  41. Comeau, M.R., Van der Vuurst de Vries, A.R., Maliszewski, C.R. & Galibert, L. CD123bright plasmacytoid predendritic cells: progenitors undergoing cell fate conversion? J. Immunol. 169, 75–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Shigematsu, H. et al. Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Zuniga, E.I., McGavern, D.B., Pruneda-Paz, J.L., Teng, C. & Oldstone, M.B. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol. 5, 1227–1234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palucka, A.K. et al. Human dendritic cell subsets in NOD/SCID mice engrafted with CD34+ hematopoietic progenitors. Blood 102, 3302–3310 (2003).

  45. Weijer, K. et al. Intrathymic and extrathymic development of human plasmacytoid dendritic cell precursors in vivo. Blood 99, 2752–2759 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Yoneyama, H. et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int. Immunol. 16, 915–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Penna, G., Sozzani, S. & Adorini, L. Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J. Immunol. 167, 1862–1866 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Krug, A. et al. IFN-producing cells respond to CXCR3 ligands in the presence of CXCL12 and secrete inflammatory chemokines upon activation. J. Immunol. 169, 6079–6083 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Vanbervliet, B. et al. The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. J. Exp. Med. 198, 823–830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zou, W. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med. 7, 1339–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Mellado, M. et al. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 20, 2497–2507 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103, 1433–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis, E.S.C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Lund, J.M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Hochrein, H. et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 101, 11416–11421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Coccia, E.M. et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur. J. Immunol. 34, 796–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Izaguirre, A. et al. Comparative analysis of IRF and IFN-α expression in human plasmacytoid and monocyte-derived dendritic cells. J. Leukoc. Biol. 74, 1125–1138 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Dai, J., Megjugorac, N.J., Amrute, S.B. & Fitzgerald-Bocarsly, P. Regulation of IFN regulatory factor-7 and IFN-α production by enveloped virus and lipopolysaccharide in human plasmacytoid dendritic cells. J. Immunol. 173, 1535–1548 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061–1068 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Cella, M. et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 189, 821–829 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Diebold, S.S. et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Bandyopadhyay, S., Perussia, B., Trinchieri, G., Miller, D.S. & Starr, S.E. Requirement for HLA-DR+ accessory cells in natural killing of cytomegalovirus-infected fibroblasts. J. Exp. Med. 164, 180–195 (1986).

    Article  CAS  PubMed  Google Scholar 

  71. Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon α/β. J. Exp. Med. 197, 885–898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Agnello, D. et al. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immunol. 23, 147–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Santini, S.M. et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med. 191, 1777–1788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Poeck, H. et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood 103, 3058–3064 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Penna, G. et al. Cutting edge: differential chemokine production by myeloid and plasmacytoid dendritic cells. J. Immunol. 169, 6673–6676 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Fonteneau, J.F. et al. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101, 3520–3526 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Megjugorac, N.J., Young, H.A., Amrute, S.B., Olshalsky, S.L. & Fitzgerald-Bocarsly, P. Virally stimulated plasmacytoid dendritic cells produce chemokines and induce migration of T and NK cells. J. Leukoc. Biol. 75, 504–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Fiebiger, E. et al. Cytokines regulate proteolysis in major histocompatibility complex class II-dependent antigen presentation by dendritic cells. J. Exp. Med. 193, 881–92 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. LeibundGut-Landmann, S., Waldburger, J.M., Reis e Sousa, C., Acha-Orbea, H. & Reith, W. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nat. Immunol. 5, 899–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1, 305–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Krug, A. et al. Interferon-producing cells fail to induce proliferation of naive T cells but can promote expansion and T helper 1 differentiation of antigen-experienced unpolarized T cells. J. Exp. Med. 197, 899–906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med. 197, 101–109 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Salio, M., Palmowski, M.J., Atzberger, A., Hermans, I.F. & Cerundolo, V. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J. Exp. Med. 199, 567–579 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schlecht, G. et al. Murine plasmacytoid dendritic cells induce effector/memory CD8+ T-cell responses in vivo after viral stimulation. Blood 104, 1808–1815 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Belz, G.T. et al. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172, 1996–2000 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Iezzi, G., Scheidegger, D. & Lanzavecchia, A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J. Exp. Med. 193, 987–93 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, Y.J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol. 2, 585–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Kadowaki, N., Antonenko, S., Lau, J.Y. & Liu, Y.J. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219–226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ito, T. et al. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J. Immunol. 172, 4253–4259 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Gilliet, M. & Liu, Y.J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gerosa, F. et al. Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-γ and interleukin-10. J. Exp. Med. 183, 2559–2569 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Levings, M.K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Kuwana, M. Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum. Immunol. 63, 1156–1163 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Moseman, E.A. et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol. 173, 4433–4442 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100, 383–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Fallarino, F. et al. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J. Immunol. 173, 3748–3754 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. De Heer, H.J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bilsborough, J., George, T.C., Norment, A. & Viney, J.L. Mucosal CD8α+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108, 481–492 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fong, L., Mengozzi, M., Abbey, N.W., Herndier, B.G. & Engleman, E.G. Productive infection of plasmacytoid dendritic cells with human immunodeficiency virus type 1 is triggered by CD40 ligation. J. Virol. 76, 11033–11041 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lopez, C., Fitzgerald, P.A. & Siegal, F.P. Severe acquired immune deficiency syndrome in male homosexuals: diminished capacity to make interferon-α in vitro associated with severe opportunistic infections. J. Infect. Dis. 148, 962–966 (1983).

    Article  CAS  PubMed  Google Scholar 

  103. Soumelis, V. et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98, 906–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Feldman, S. et al. Decreased interferon-α production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin. Immunol. 101, 201–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Chehimi, J. et al. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J. Immunol. 168, 4796–4801 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Ronnblom, L.E., Alm, G.V. & Oberg, K.E. Possible induction of systemic lupus erythematosus by interferon-α treatment in a patient with a malignant carcinoid tumour. J. Intern. Med. 227, 207–210 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Preble, O.T., Black, R.J., Friedman, R.M., Klippel, J.H. & Vilcek, J. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 216, 429–431 (1982).

    Article  CAS  PubMed  Google Scholar 

  108. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F.L. Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cederblad, B. et al. Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-α-producing cells. J. Autoimmun. 11, 465–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Vallin, H., Perers, A., Alm, G.V. & Ronnblom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-α inducer in systemic lupus erythematosus. J. Immunol. 163, 6306–6313 (1999).

    CAS  PubMed  Google Scholar 

  111. Blanco, P., Palucka, A.K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294, 1540–1543 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bell, D. et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J. Exp. Med. 190, 1417–14126 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vicari, A.P. et al. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J. Exp. Med. 196, 541–549 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vermi, W. et al. Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J. Pathol. 200, 255–268 (2003).

    Article  PubMed  Google Scholar 

  117. Chaux, P. et al. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression. A role in the immune tolerance to antigenic tumors. Adv. Exp. Med. Biol. 417, 525–528 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Dhodapkar, M.V. & Steinman, R.M. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood 100, 174–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Mahnke, K., Qian, Y., Knop, J. & Enk, A.H. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101, 4862–4869 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Munn, D.H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Palamara, F. et al. Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J. Immunol. 173, 3051–3061 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Jahnsen, F.L. et al. Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy. J. Immunol. 165, 4062–4068 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Facchetti for pDC images; and S. Sozzani, S. Gilfillan, A. Blasius and W. Barchet for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Colonna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colonna, M., Trinchieri, G. & Liu, YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol 5, 1219–1226 (2004). https://doi.org/10.1038/ni1141

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing