Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signaling by the kinase MINK is essential in the negative selection of autoreactive thymocytes

An Erratum to this article was published on 01 February 2005

Abstract

Signaling through the T cell antigen receptor leading to elimination (negative selection) or differentiation (positive selection) of developing thymocytes generates a self-tolerant T cell repertoire. Here we report that the serine-threonine kinase MINK selectively connects the T cell receptor to a signaling pathway that mediates negative but not positive selection. Analysis of this pathway suggested that the essential function of MINK in the elimination of self-reactive thymocytes may be associated with 'downstream' activation of Jun kinase and enhancement of expression of the proapoptotic molecule Bim.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MINK expression in bone marrow and thymocyte subpopulations.
Figure 2: Characterization of MINK-deficient mice.
Figure 3: MINK expression is required for deletion of Vβ5+ TCR cells by the Mtv-9 endogenous superantigen.
Figure 4: Peptide-induced deletion of autoreactive thymocytes in mice expressing an MHC class II– or class I–restricted TCR transgene.
Figure 5: Analysis of upstream events in the MINK-dependent signaling pathway.
Figure 6: Analysis of downstream events in the MINK-dependent signaling pathway.

Similar content being viewed by others

References

  1. Alberola-Ila, J., Forbush, K.A., Seger, R., Krebs, E.G. & Perlmutter, R.M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  CAS  Google Scholar 

  2. Backstrom, B.T., Muller, U., Hausmann, B. & Palmer, E. Positive selection through a motif in the αβ T cell receptor. Science 281, 835–838 (1998).

    Article  CAS  Google Scholar 

  3. Werlen, G., Hausmann, B. & Palmer, E. A motif in the αβ T–cell receptor controls positive selection by modulating Erk activity. Nature 406, 422–426 (2000).

    Article  CAS  Google Scholar 

  4. Delgado, P., Fernandez, E., Dave, V., Kappes, D. & Alarcon, B. CD3δ couples T–cell receptor signalling to Erk activation and thymocyte positive selection. Nature 406, 426–430 (2000).

    Article  CAS  Google Scholar 

  5. Hailman, E., Burack, W.R., Shaw, A.S., Dustin, M.L. & Allen, P.M. Immature CD4+CD8+ thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 16, 839–848 (2002).

    Article  CAS  Google Scholar 

  6. Neilson, J.R., Winslow, M.M., Hur, E.M. & Crabtree, G.R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    Article  CAS  Google Scholar 

  7. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  Google Scholar 

  8. Strasser, A. & Bouillet, P. The control of apoptosis in lymphocyte selection. Immunol. Rev. 193, 82–92 (2003).

    Article  CAS  Google Scholar 

  9. Rincon, M. et al. The Jnk pathway regulates the in vivo deletion of immature CD4+CD8+ thymocytes. J. Exp. Med. 188, 1817–1830 (1998).

    Article  CAS  Google Scholar 

  10. McCarty, N., Shinohara, M.L., Lu, L. & Cantor, H. Detailed analysis of gene expression during development of T cell lineages in the thymus. Proc. Natl. Acad. Sci. USA 101, 9339–9344 (2004).

    Article  CAS  Google Scholar 

  11. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  12. Sui, G. et al. A DNA vector–based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  Google Scholar 

  13. Rubinson, D.A. et al. A lentivirus–based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  Google Scholar 

  14. Baribaud, F. et al. Identification of key amino acids of the mouse mammary tumor virus superantigen involved in the specific interaction with T–cell receptor V(beta) domains. J. Virol. 75, 7453–7461 (2001).

    Article  CAS  Google Scholar 

  15. Ali, M., Weinreich, M., Balcaitis, S., Cooper, C.J. & Fink, P.J. Differential regulation of peripheral CD4+ T cell tolerance induced by deletion and TCR revision. J. Immunol. 171, 6290–6296 (2003).

    Article  CAS  Google Scholar 

  16. Zhan, Y. et al. Without peripheral interference, thymic deletion is mediated in a cohort of double–positive cells without classical activation. Proc. Natl. Acad. Sci. USA 100, 1197–1202 (2003).

    Article  CAS  Google Scholar 

  17. Kisielow, P., Teh, H.S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen–specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733 (1988).

    Article  CAS  Google Scholar 

  18. Teh, H.S. et al. Early deletion and late positive selection of T cells expressing a male-specific receptor in T-cell receptor transgenic mice. Dev. Immunol. 1, 1–10 (1990).

    Article  CAS  Google Scholar 

  19. Dan, I. et al. Molecular cloning of MINK, a novel member of mammalian GCK family kinases, which is up-regulated during postnatal mouse cerebral development. FEBS Lett. 469, 19–23 (2000).

    Article  CAS  Google Scholar 

  20. McCarty, J.H. The Nck SH2/SH3 adaptor protein: a regulator of multiple intracellular signal transduction events. Bioessays 20, 913–921 (1998).

    Article  CAS  Google Scholar 

  21. Gil, D., Schamel, W.W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  Google Scholar 

  22. Davis, M.M. A new trigger for T cells. Cell 110, 285–287 (2002).

    Article  CAS  Google Scholar 

  23. Rincon, M., Flavell, R.A. & Davis, R.A. The Jnk and P38 MAP kinase signaling pathways in T cell–mediated immune responses. Free Radic. Biol. Med. 28, 1328–1337 (2000).

    Article  CAS  Google Scholar 

  24. Sabapathy, K. et al. Jnk2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125 (1999).

    Article  CAS  Google Scholar 

  25. Sabapathy, K. et al. c-Jun NH2-terminal kinase (Jnk)1 and Jnk2 have similar and stage–dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med. 193, 317–328 (2001).

    Article  CAS  Google Scholar 

  26. Harris, C.A. & Johnson, E.M., Jr. BH3-only Bcl-2 family members are coordinately regulated by the Jnk pathway and require Bax to induce apoptosis in neurons. J. Biol. Chem. 276, 37754–37760 (2001).

    CAS  PubMed  Google Scholar 

  27. Putcha, G.V. et al. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29, 615–628 (2001).

    Article  CAS  Google Scholar 

  28. Whitfield, J., Neame, S.J., Paquet, L., Bernard, O. & Ham, J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29, 629–643 (2001).

    Article  CAS  Google Scholar 

  29. Dan, I., Watanabe, N.M. & Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11, 220–230 (2001).

    Article  CAS  Google Scholar 

  30. Davis, R.J. Signal transduction by the Jnk group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  Google Scholar 

  31. Fanger, G.R., Gerwins, P., Widmann, C., Jarpe, M.B. & Johnson, G.L. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7, 67–74 (1997).

    Article  CAS  Google Scholar 

  32. Lei, K. et al. The Bax subfamily of Bcl2–related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol. Cell. Biol. 22, 4929–4942 (2002).

    Article  CAS  Google Scholar 

  33. Behrens, A. et al. Jun N-terminal kinase 2 modulates thymocyte apoptosis and T cell activation through c-Jun and nuclear factor of activated T cell (NF-AT). Proc. Natl. Acad. Sci. USA 98, 1769–1774 (2001).

    Article  CAS  Google Scholar 

  34. Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 14, 207–215 (2002).

    Article  CAS  Google Scholar 

  35. Akashi, K., Kondo, M. & Weissman, I.L. Two distinct pathways of positive selection for thymocytes. Proc. Natl. Acad. Sci. USA 95, 2486–2491 (1998).

    Article  CAS  Google Scholar 

  36. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Levecchio for cell sorting; K. Akashi for discussions and critical comments; and A. Angel for assistance with the manuscript and figures. Supported by National Research Service Award (T32 AI07386 to N.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey Cantor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sorting of thymic subpopulations for real time PCRs. (PDF 201 kb)

Supplementary Fig. 2

Additional analysis of MINK mice. (PDF 273 kb)

Supplementary Fig. 3

Additional analysis of HY MINK and HY control chimeric mice. (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, N., Paust, S., Ikizawa, K. et al. Signaling by the kinase MINK is essential in the negative selection of autoreactive thymocytes. Nat Immunol 6, 65–72 (2005). https://doi.org/10.1038/ni1145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing