Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells

Abstract

In dendritic cells (DCs), peptides derived from internalized particulate substrates are efficiently cross-presented by major histocompatibility complex (MHC) class I molecules. Exogenous soluble antigens are also presented by DCs but with substantially lower efficiency. Here we show that particulate and soluble antigens use different transport pathways. Particulate antigens have been shown to access peripheral endoplasmic reticulum (ER)–like phagosomes that are competent for cross-presentation, whereas we show here that soluble proteins that escape proteolysis enter the lumen of the ER. From there, they may be translocated into the cytosol by the pathway established for ER-associated degradation and their derived peptides may be transported back into the ER for binding by MHC class I molecules. MHC class I presentation involving the constitutive retrograde transport of soluble proteins to the ER by DCs may facilitate DC tolerance to components of their extracellular environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of soluble US6(20–146) on the surface expression of MHC class I molecules.
Figure 2: Exogenous soluble US6(20–146) inhibits ER-based translocation by TAP.
Figure 3: DCs but not macrophages accumulate US6 after its internalization.
Figure 4: Exogenous β2M reaches the ER lumen in DCs from β2M-deficient mice.
Figure 5: Exogenous human β2M interacts functionally with MHC class I heavy chains in the ER of mouse DCs.
Figure 6: Exogenous US6(20–146) inhibits endogenous antigen presentation.

Similar content being viewed by others

References

  1. Mueller, S.N., Jones, C.M., Smith, C.M., Heath, W.R. & Carbone, F.R. Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J. Exp. Med. 195, 651–656 (2002).

    Article  CAS  Google Scholar 

  2. Gredmark, S. & Soderberg-Naucler, C. Human cytomegalovirus inhibits differentiation of monocytes into dendritic cells with the consequence of depressed immunological functions. J. Virol. 77, 10943–10956 (2003).

    Article  CAS  Google Scholar 

  3. Cresswell, P., Bangia, N., Dick, T. & Diedrich, G. The nature of the MHC class I peptide loading complex. Immunol. Rev. 172, 21–28 (1999).

    Article  CAS  Google Scholar 

  4. Ackerman, A.L. & Cresswell, P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol. 5, 678–684 (2004).

    Article  CAS  Google Scholar 

  5. Gagnon, E. et al. Endoplasmic reticulum–mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    Article  CAS  Google Scholar 

  6. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  Google Scholar 

  7. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  Google Scholar 

  8. den Haan, J.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    Article  CAS  Google Scholar 

  9. Pooley, J.L., Heath, W.R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166, 5327–5330 (2001).

    Article  CAS  Google Scholar 

  10. Steinman, R.M. Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt. Sinai J. Med. 68, 106–166 (2001).

    Google Scholar 

  11. Carbone, F.R. & Bevan, M.J. Class I-restricted processing and presentation of exogenous cell–associated antigen in vivo. J. Exp. Med. 171, 377–387 (1990).

    Article  CAS  Google Scholar 

  12. Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B. & Rock, K.L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl. Acad. Sci. USA 90, 4942–4946 (1993).

    Article  CAS  Google Scholar 

  13. Reis e Sousa, C. & Germain, R.N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182, 841–851 (1995).

    Article  CAS  Google Scholar 

  14. Ackerman, A.L., Kyritsis, C., Tampe, R. & Cresswell, P. Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc. Natl. Acad. Sci. USA 100, 12889–12894 (2003).

    Article  CAS  Google Scholar 

  15. Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621 (1997).

    Article  CAS  Google Scholar 

  16. Hengel, H. et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632 (1997).

    Article  CAS  Google Scholar 

  17. Lehner, P.J., Karttunen, J.T., Wilkinson, G.W. & Cresswell, P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing–dependent peptide translocation. Proc. Natl. Acad. Sci. USA 94, 6904–6909 (1997).

    Article  CAS  Google Scholar 

  18. Kyritsis, C. et al. Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J. Biol. Chem. 276, 48031–48039 (2001).

    Article  CAS  Google Scholar 

  19. Hewitt, E.W., Gupta, S.S. & Lehner, P.J. The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J. 20, 387–396 (2001).

    Article  CAS  Google Scholar 

  20. Wei, M.L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence–derived peptides. Nature 356, 443–446 (1992).

    Article  CAS  Google Scholar 

  21. Androlewicz, M.J. & Cresswell, P. Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity 1, 7–14 (1994).

    Article  CAS  Google Scholar 

  22. Bangia, N., Lehner, P.J., Hughes, E.A., Surman, M. & Cresswell, P. The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. Eur. J. Immunol. 29, 1858–1870 (1999).

    Article  CAS  Google Scholar 

  23. Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    Article  CAS  Google Scholar 

  24. Constant, S.L. et al. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J. Clin. Invest. 110, 1441–1448 (2002).

    Article  CAS  Google Scholar 

  25. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3, 473–483 (2001).

    Article  CAS  Google Scholar 

  26. Sandvig, K. & van Deurs, B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529, 49–53 (2002).

    Article  CAS  Google Scholar 

  27. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    Article  CAS  Google Scholar 

  28. Reits, E.A., Vos, J.C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000).

    Article  CAS  Google Scholar 

  29. Blander, J.M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    Article  CAS  Google Scholar 

  30. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  31. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  Google Scholar 

  32. St Louis, D.C. et al. Evidence for distinct intracellular signaling pathways in CD34+ progenitor to dendritic cell differentiation from a human cell line model. J. Immunol. 162, 3237–3248 (1999).

    CAS  PubMed  Google Scholar 

  33. Hebert, D.N., Foellmer, B. & Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433 (1995).

    Article  CAS  Google Scholar 

  34. Brodsky, F.M., Bodmer, W.F. & Parham, P. Characterization of a monoclonal anti–β2-microglobulin antibody and its use in the genetic and biochemical analysis of major histocompatibility antigens. Eur. J. Immunol. 9, 536–545 (1979).

    Article  CAS  Google Scholar 

  35. Dick, T.P., Bangia, N., Peaper, D.R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I–peptide complexes. Immunity 16, 87–98 (2002).

    Article  CAS  Google Scholar 

  36. Berger, A.E., Davis, J.E. & Cresswell, P. Monoclonal antibody to HLA-A3. Hybridoma 1, 87–90 (1982).

    Article  CAS  Google Scholar 

  37. Parham, P., Barnstable, C.J. & Bodmer, W.F. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. J. Immunol. 123, 342–349 (1979).

    CAS  PubMed  Google Scholar 

  38. Porgador, A., Yewdell, J.W., Deng, Y., Bennink, J.R. & Germain, R.N. Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).

    Article  CAS  Google Scholar 

  39. Hammerling, G.J., Rusch, E., Tada, N., Kimura, S. & Hammerling, U. Localization of allodeterminants on H-2Kb antigens determined with monoclonal antibodies and H-2 mutant mice. Proc. Natl. Acad. Sci. USA 79, 4737–4741 (1982).

    Article  CAS  Google Scholar 

  40. Lutz, P.M. & Cresswell, P. An epitope common to HLA class I and class II antigens, Ig light chains, and β2-microglobulin. Immunogenetics 25, 228–233 (1987).

    Article  CAS  Google Scholar 

  41. Cannon, K.S. & Cresswell, P. Quality control of transmembrane domain assembly in the tetraspanin CD82. EMBO J. 20, 2443–2453 (2001).

    Article  CAS  Google Scholar 

  42. Kopecky, S.A., Willingham, M.C. & Lyles, D.S. Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. J. Virol. 75, 12169–12181 (2001).

    Article  CAS  Google Scholar 

  43. Larsson, M. et al. Efficiency of cross presentation of vaccinia virus–derived antigens by human dendritic cells. Eur. J. Immunol. 31, 3432–3442 (2001).

    Article  CAS  Google Scholar 

  44. Ackerman, A.L. & Cresswell, P. Regulation of MHC class I transport in human dendritic cells and the dendritic-like cell line KG-1. J. Immunol. 170, 4178–4188 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Howard Hughes Medical Institute and National Institutes of Health (F31 AI 101347 to A.L.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cresswell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackerman, A., Kyritsis, C., Tampé, R. et al. Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat Immunol 6, 107–113 (2005). https://doi.org/10.1038/ni1147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing