Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1

Abstract

The elimination of viruses and tumors by natural killer cells is mediated by specific natural killer cell receptors. To study the in vivo function of a principal activating natural killer cell receptor, NCR1 (NKp46 in humans), we replaced the gene encoding this receptor (Ncr1) with a green fluorescent protein reporter cassette. There was enhanced spread of certain tumors in 129/Sv but not C57BL/6 Ncr1gfp/gfp mice, and influenza virus infection was lethal in both 129/Sv and C57BL/6 Ncr1gfp/gfp mice. We noted accumulation of natural killer cells at the site of influenza infection by tracking the green fluorescent protein. Our results demonstrate a critical function for Ncr1 in the in vivo eradication of influenza virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ncr1gfp expression in NK cells.
Figure 2: NK cell–specific Ncr1gfp expression.
Figure 3: Reduced clearance of tumor cells in vivo.
Figure 4: Lethal influenza infection in 129/Sv Ncr1gfp/gfp mice.
Figure 5: NK cells accumulate at the site of influenza infection.
Figure 6: Strain-specific NCR1 functions.

Similar content being viewed by others

References

  1. Yokoyama, W.M., Kim, S. & French, A.R. The dynamic life of natural killer cells. Annu. Rev. Immunol. 22, 405–429 (2004).

    Article  CAS  Google Scholar 

  2. Vankayalapati, R. et al. The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol. 168, 3451–3457 (2002).

    Article  CAS  Google Scholar 

  3. Warfield, K.L. et al. Role of natural killer cells in innate protection against lethal ebola virus infection. J. Exp. Med. 200, 169–179 (2004).

    Article  CAS  Google Scholar 

  4. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Article  CAS  Google Scholar 

  5. Moretta, L. & Moretta, A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J. 23, 255–259 (2004).

    Article  CAS  Google Scholar 

  6. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998).

    Article  CAS  Google Scholar 

  7. De Maria, A. et al. Identification, molecular cloning and functional characterization of NKp46 and NKp30 natural cytotoxicity receptors in Macaca fascicularis NK cells. Eur. J. Immunol. 31, 3546–3556 (2001).

    Article  CAS  Google Scholar 

  8. Biassoni, R. et al. The murine homologue of the human NKp46, a triggering receptor involved in the induction of natural cytotoxicity. Eur. J. Immunol. 29, 1014–1020 (1999).

    Article  CAS  Google Scholar 

  9. Falco, M., Cantoni, C., Bottino, C., Moretta, A. & Biassoni, R. Identification of the rat homologue of the human NKp46 triggering receptor. Immunol. Lett. 68, 411–414 (1999).

    Article  CAS  Google Scholar 

  10. Storset, A.K., Slettedal, I.O., Williams, J.L., Law, A. & Dissen, E. Natural killer cell receptors in cattle: a bovine killer cell immunoglobulin-like receptor multigene family contains members with divergent signaling motifs. Eur. J. Immunol. 33, 980–990 (2003).

    Article  CAS  Google Scholar 

  11. Mandelboim, O. & Porgador, A. NKp46. Int. J. Biochem. Cell Biol. 33, 1147–1150 (2001).

    Article  CAS  Google Scholar 

  12. Karre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 55, 221–228 (2002).

    Article  CAS  Google Scholar 

  13. Sivori, S. et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur. J. Immunol. 29, 1656–1666 (1999).

    Article  CAS  Google Scholar 

  14. Sivori, S. et al. Triggering receptors involved in natural killer cell-mediated cytotoxicity against choriocarcinoma cell lines. Hum. Immunol. 61, 1055–1058 (2000).

    Article  CAS  Google Scholar 

  15. Sivori, S. et al. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J. Neuroimmunol. 107, 220–225 (2000).

    Article  CAS  Google Scholar 

  16. Weiss, L., Reich, S., Mandelboim, O. & Slavin, S. Murine B-cell leukemia lymphoma (BCL1) cells as a target for NK cell-mediated immunotherapy. Bone Marrow Transplant. 33, 1137–1141 (2004).

    Article  CAS  Google Scholar 

  17. Spaggiari, G.M. et al. NK cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. Eur. J. Immunol. 31, 1656–1665 (2001).

    Article  CAS  Google Scholar 

  18. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    Article  CAS  Google Scholar 

  19. Arnon, T.I. et al. Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur. J. Immunol. 31, 2680–2689 (2001).

    Article  CAS  Google Scholar 

  20. Costello, R.T. et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99, 3661–3667 (2002).

    Article  CAS  Google Scholar 

  21. De Maria, A. et al. The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur. J. Immunol. 33, 2410–2418 (2003).

    Article  CAS  Google Scholar 

  22. Markel, G. et al. The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. Blood 103, 1770–1778 (2004).

    Article  CAS  Google Scholar 

  23. Schleypen, J.S. et al. Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int. J. Cancer 106, 905–912 (2003).

    Article  CAS  Google Scholar 

  24. Bloushtain, N. et al. Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J. Immunol. 173, 2392–2401 (2004).

    Article  CAS  Google Scholar 

  25. Biron, C.A., Byron, K.S. & Sullivan, J.L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735 (1989).

    Article  CAS  Google Scholar 

  26. Stein-Streilein, J. & Guffee, J. In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J. Immunol. 136, 1435–1441 (1986).

    CAS  Google Scholar 

  27. Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P. & Salazar-Mather, T.P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  Google Scholar 

  28. Orange, J.S. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 4, 1545–1558 (2002).

    Article  CAS  Google Scholar 

  29. Arnon, T.I. et al. The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 103, 664–672 (2004).

    Article  CAS  Google Scholar 

  30. McVicar, D.W. et al. Aberrant DAP12 signaling in the 129 strain of mice: implications for the analysis of gene-targeted mice. J. Immunol. 169, 1721–1728 (2002).

    Article  CAS  Google Scholar 

  31. Arase, H., Saito, T., Phillips, J.H. & Lanier, L.L. Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol. 167, 1141–1144 (2001).

    Article  CAS  Google Scholar 

  32. Rolink, A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194 (1996).

    Article  CAS  Google Scholar 

  33. Oberg, L. et al. Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytes in vivo - role of KARAP/DAP12-dependent and -independent pathways. Eur. J. Immunol. 34, 1646–1653 (2004).

    Article  Google Scholar 

  34. Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 187, 2065–2072 (1998).

    Article  CAS  Google Scholar 

  35. Biassoni, R. et al. Human natural killer cell receptors: insights into their molecular function and structure. J. Cell. Mol. Med. 7, 376–387 (2003).

    Article  CAS  Google Scholar 

  36. Long, E.O. Tumor cell recognition by natural killer cells. Semin. Cancer Biol. 12, 57–61 (2002).

    Article  CAS  Google Scholar 

  37. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  38. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  Google Scholar 

  39. Sivori, S. et al. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur. J. Immunol. 33, 3439–3447 (2003).

    Article  CAS  Google Scholar 

  40. Colucci, F. et al. Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nat. Immunol. 3, 288–294 (2002).

    Article  CAS  Google Scholar 

  41. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  Google Scholar 

  42. Qimron, U. et al. Non-replicating mucosal and systemic vaccines: quantitative and qualitative differences in the Ag-specific CD8+ T cell population in different tissues. Vaccine 22, 1390–1394 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Israel Science Foundation (O.M.), the Binational Science Foundation (O.M.), the Israel Ministry of Health and the European Commission (LSHC-CT-2002-518178 to O.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Mandelboim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Generation of Ncr1gfp/gfp mice. (PDF 541 kb)

Supplementary Figure 2

Ncr1gfp expression in NK cells after PGK-neor excision in 129/sv mice. (PDF 402 kb)

Supplementary Figure 3

NK cell-specific Ncr1gfp expression in 129/sv mice after PGK-neor excision. (PDF 401 kb)

Supplementary Figure 4

C57BL/6 mice express Ncr1gfp in NK cells. (PDF 426 kb)

Supplementary Figure 5

NK cell-specific Ncr1gfp expression in C57BL/6 mice. (PDF 421 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazit, R., Gruda, R., Elboim, M. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7, 517–523 (2006). https://doi.org/10.1038/ni1322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing