Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response

Abstract

At mammalian body temperature, the plague bacillus Yersinia pestis synthesizes lipopolysaccharide (LPS)–lipid A with poor Toll-like receptor 4 (TLR4)–stimulating activity. To address the effect of weak TLR4 stimulation on virulence, we modified Y. pestis to produce a potent TLR4-stimulating LPS. Modified Y. pestis was completely avirulent after subcutaneous infection even at high challenge doses. Resistance to disease required TLR4, the adaptor protein MyD88 and coreceptor MD-2 and was considerably enhanced by CD14 and the adaptor Mal. Both innate and adaptive responses were required for sterilizing immunity against the modified strain, and convalescent mice were protected from both subcutaneous and respiratory challenge with wild-type Y. pestis. Despite the presence of other established immune evasion mechanisms, the modified Y. pestis was unable to cause systemic disease, demonstrating that the ability to evade the LPS-induced inflammatory response is critical for Y. pestis virulence. Evading TLR4 activation by lipid A alteration may contribute to the virulence of various Gram-negative bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LPS from Y. pestis grown at 37 °C has inhibitory activity.
Figure 2: Y. pestis pLpxL synthesizes a potent LPS.
Figure 3: Y. pestis pLpxL is avirulent in wild-type mice.
Figure 4: MyD88, Mal and CD14 contribute to the LPS-mediated survival of mice infected with KIM1001-pLpxL.
Figure 5: Y. pestis with potent TLR4-activating ability is an effective vaccine against plague.
Figure 6: Adaptive immunity is critical for protection against KIM1001-pLpxL.

Similar content being viewed by others

References

  1. Perry, R.D. & Fetherston, J.D. Yersinia pestis–etiologic agent of plague. Clin. Microbiol. Rev. 10, 35–66 (1997).

    Article  CAS  Google Scholar 

  2. Sodeinde, O.A. et al. A surface protease and the invasive character of plague. Science 258, 1004–1007 (1992).

    Article  CAS  Google Scholar 

  3. Nakajima, R., Motin, V.L. & Brubaker, R.R. Suppression of cytokines in mice by protein A-V antigen fusion peptide and restoration of synthesis by active immunization. Infect. Immun. 63, 3021–3029 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cornelis, G.R. The Yersinia Ysc-Yop 'type III' weaponry. Nat. Rev. Mol. Cell Biol. 3, 742–752 (2002).

    Article  CAS  Google Scholar 

  5. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  6. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  7. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  8. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  Google Scholar 

  9. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  10. Raetz, C.R.H. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  Google Scholar 

  11. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  Google Scholar 

  12. Miyake, K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol. 12, 186–192 (2004).

    Article  CAS  Google Scholar 

  13. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J. & Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  Google Scholar 

  14. Zähringer, U., Lindner, B. & Rietschel, E.T. in Endotoxin in Health and Disease (eds. Brade, H., Opal, S.M., Vogel, S.N. & Morrison, D.C.) 93–114 (Marcel Dekker, New York, 1999).

    Google Scholar 

  15. Dixon, D.R. & Darveau, R.P. Lipopolysaccharide heterogeneity: innate host responses to bacterial modification of lipid a structure. J. Dent. Res. 84, 584–595 (2005).

    Article  CAS  Google Scholar 

  16. Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092–4098 (2002).

    Article  CAS  Google Scholar 

  17. Rebeil, R., Ernst, R.K., Gowen, B.B., Miller, S.I. & Hinnebusch, B.J. Variation in lipid A structure in the pathogenic yersiniae. Mol. Microbiol. 52, 1363–1373 (2004).

    Article  CAS  Google Scholar 

  18. Knirel, Y.A. et al. Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 44, 1731–1743 (2005).

    Article  CAS  Google Scholar 

  19. Loppnow, H. et al. IL-1 induction capacity of defined lipopolysaccharide partial structures. J. Immunol. 142, 3229–3238 (1989).

    CAS  PubMed  Google Scholar 

  20. Golenbock, D.T., Hampton, R.Y., Qureshi, N., Takayama, K. & Raetz, C.R.H. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 19490–19498 (1991).

    CAS  PubMed  Google Scholar 

  21. Carty, S.M., Sreekumar, K.R. & Raetz, C.R.H. Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J. Biol. Chem. 274, 9677–9685 (1999).

    Article  CAS  Google Scholar 

  22. Vorachek-Warren, M.K., Carty, S.M., Lin, S., Cotter, R.J. & Raetz, C.R.H. An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C. J. Biol. Chem. 277, 14186–14193 (2002).

    Article  CAS  Google Scholar 

  23. Deng, W. et al. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601–4611 (2002).

    Article  CAS  Google Scholar 

  24. Perry, R.D. et al. DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect. Immun. 66, 4611–4623 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).

    Article  CAS  Google Scholar 

  26. Akashi, S. et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int. Immunol. 13, 1595–1599 (2001).

    Article  CAS  Google Scholar 

  27. Hajjar, A.M., Ernst, R.K., Tsai, J.H., Wilson, C.B. & Miller, S.I. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3, 354–359 (2002).

    Article  CAS  Google Scholar 

  28. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163–2167 (2000).

    Article  CAS  Google Scholar 

  29. Schromm, A.B. et al. Molecular genetic analysis of an endotoxin nonresponder mutant Cell Line. A point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J. Exp. Med. 194, 79–88 (2001).

    Article  CAS  Google Scholar 

  30. Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3, 667–672 (2002).

    Article  CAS  Google Scholar 

  31. Skurnik, M. & Bengoechea, J.A. The biosynthesis and biological role of lipopolysaccharide O-antigens of pathogenic Yersiniae. Carbohydr. Res. 338, 2521–2529 (2003).

    Article  CAS  Google Scholar 

  32. Vinogradov, E.V. et al. The core structure of the lipopolysaccharide from the causative agent of plague, Yersinia pestis. Carbohydr. Res. 337, 775–777 (2002).

    Article  CAS  Google Scholar 

  33. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6, 565–570 (2005).

    Article  CAS  Google Scholar 

  34. Huber, M. et al. R-form LPS, the master key to the activation of TLR4/MD-2-positive cells. Eur. J. Immunol. 36, 701–711 (2006).

    Article  CAS  Google Scholar 

  35. van Duin, D., Medzhitov, R. & Shaw, A.C. Triggering TLR signaling in vaccination. Trends Immunol. 27, 49–55 (2006).

    Article  CAS  Google Scholar 

  36. Parent, M.A. et al. Cell-mediated protection against pulmonary Yersinia pestis infection. Infect. Immun. 73, 7304–7310 (2005).

    Article  CAS  Google Scholar 

  37. Ulevitch, R.J. Therapeutics targeting the innate immune system. Nat. Rev. Immunol. 4, 512–520 (2004).

    Article  CAS  Google Scholar 

  38. Agrawal, S. & Kandimalla, E.R. Modulation of Toll-like receptor 9 responses through synthetic immunostimulatory motifs of DNA. Ann. NY Acad. Sci. 1002, 30–42 (2003).

    Article  CAS  Google Scholar 

  39. Goguen, J.D., Yother, J. & Straley, S.C. Genetic analysis of the low calcium response in Yersinia pestis mu d1(Ap lac) insertion mutants. J. Bacteriol. 160, 842–848 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Westphal, O., Luderitz, O. & Bister, F. Uber die extraktion von bacterien mit phenol/wasser. Z. Naturforsch. B 7, 148–155 (1952).

    Article  Google Scholar 

  41. Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N. & Weis, J.J. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  Google Scholar 

  42. Liu, W-C., Oikawa, M., Fukase, K., Suda, Y. & Kusumoto, S. A divergent synthesis of lipid A and its chemically stable unnatural analogues. Bull. Chem. Soc. Jpn. 72, 1377–1385 (1999).

    Article  CAS  Google Scholar 

  43. Latz, E. et al. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the Toll-like receptor 4-MD-2–CD14 complex in a process that is distinct from the initiation of signal transduction. J. Biol. Chem. 277, 47834–47843 (2002).

    Article  CAS  Google Scholar 

  44. Bandyopadhyay, S.K., Leonard, G.T., Jr, Bandyopadhyay, T., Stark, G.R. & Sen, G.C. Transcriptional induction by double-stranded RNA is mediated by interferon-stimulated response elements without activation of interferon-stimulated gene factor 3. J. Biol. Chem. 270, 19624–19629 (1995).

    Article  CAS  Google Scholar 

  45. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  46. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  47. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  Google Scholar 

  48. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  Google Scholar 

  49. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  Google Scholar 

  50. Moore, K.J. et al. Divergent response to LPS and bacteria in CD14-deficient murine macrophages. J. Immunol. 165, 4272–4280 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Yuan, N. Pan and K. Trimble for help with experiments; N. Deitemeyer and C. Lee for technical assistance; A. Cerny and J. Boulangier for animal husbandry; D.T. Golenbock for support; and R.R. Ingalls, N. Silverman and K. Fitzgerald for critically reading the manuscript. Supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01 AI057588 to E.L.) and the Diabetes Endocrinology Research Center (DK 32520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egil Lien.

Ethics declarations

Competing interests

A patent has been filed concerning the use of modified bacterial strains as vaccines.

Supplementary information

Supplementary Fig. 1

Y. pestis grown at 37 °C is a poor stimulator of TLR4 signaling. (PDF 75 kb)

Supplementary Fig. 2

Y. pestis 37 °C LPS inhibits activation of non-human primate cells by 26 °C LPS. (PDF 51 kb)

Supplementary Fig. 3

Mass spectrometry analysis of lipid A from Y. pestis KIM5 and KIM5-pLpxL grown at 26 °C or 37 °C. (PDF 465 kb)

Supplementary Fig. 4

Non-human primate cells respond to LPS from Y. pestis KIM5-pLpxL grown at both 26 °C and 37 °C. (PDF 64 kb)

Supplementary Fig. 5

Y. pestis containing pLpxL retains key features. (PDF 132 kb)

Supplementary Fig. 6

The presence of plasmid vector does not affect KIM1001 virulence. (PDF 51 kb)

Supplementary Fig. 7

Y. pestis KIM1001-pLpxL IV infection is associated with increased survivial times. (PDF 56 kb)

Supplementary Fig. 8

Y. pestis and Y. pestis-pLpxL generate a rough form of LPS. (PDF 71 kb)

Supplementary Methods (PDF 90 kb)

Supplementary Note (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montminy, S., Khan, N., McGrath, S. et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7, 1066–1073 (2006). https://doi.org/10.1038/ni1386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing