Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues

Abstract

Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) appears to be specialized to produce peptides presented on class I major histocompatibility complex molecules. We found that purified ERAP1 trimmed peptides that were ten residues or longer, but spared eight-residue peptides. In vivo, ERAP1 enhanced production of an eight-residue ovalbumin epitope from precursors extended on the NH2 terminus that were generated either in the ER or cytosol. Purified ERAP1 also trimmed nearly half the nine-residue peptides tested. By destroying such nine-residue peptides in normal human cells, ERAP1 reduced the overall supply of antigenic peptides. However, after interferon-γ treatment, which causes proteasomes to produce more NH2-extended antigenic precursors, ERAP1 increased the supply of peptides for MHC class I antigen presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elimination of ERAP1 with siRNA reduces presentation of SIINFEKL.
Figure 2: Altering ERAP1 expression markedly affects human MHC class I surface expression.
Figure 3: Purified ERAP1 efficiently hydrolyzes peptides to eight or nine residues.
Figure 4: In IFN-γ–treated cells, eliminating ERAP1 reduces antigen presentation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. York, I.A., Goldberg, A.L., Mo, X.Y. & Rock, K.L. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol. Rev. 172, 49–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Rock, K.L., York, I.A., Saric, T. & Goldberg, A.L. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 80, 1–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg, A.L., Cascio, P., Saric, T. & Rock, K.L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 1169, 1–17 (2002).

    Google Scholar 

  5. Kisselev, A.F., Akopian, T.N., Woo, K.M. & Goldberg, A.L. The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Craiu, A., Aklopian, T., Goldberg, A.L. & Rock, K.L. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc. Natl. Acad. Sci. USA 94, 10850–10855 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mo, X.Y., Cascio, P., Lemerise, K., Goldberg, A.L. & Rock, K. Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J. Immunol. 163, 5851–5859 (1999).

    CAS  PubMed  Google Scholar 

  8. Beninga, J., Rock, K.L. & Goldberg, A.L. Interferon-γ can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem. 273, 18734–18742 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Saric, T. et al. Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J. Biol. Chem. 276, 36474–36481 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Stoltze, L. et al. Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires proteasome-dependent and –independent proteolytic activities. Eur. J. Immunol. 28, 4029–4036 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Fruci, D., Niedermann, G., Butler, R.H. & van Endert, P.M. Efficient MHC class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity 15, 467–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Stoltze, L. et al. Two new proteases in the MHC class I processing pathway. Nature Immunol. 1, 413–418 (2000).

    Article  CAS  Google Scholar 

  13. Elliott, T., Willis, A., Cerundolo, V. & Townsend, A. Processing of major histocompatibility class I-restricted antigens in the endoplasmic reticulum. J. Exp. Med. 181, 1481–1491 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Lobigs, M., Chelvanayagam, G. & Mullbacher, A. Proteolytic processing of peptides in the lumen of the endoplasmic reticulum for antigen presentation by major histocompatibility class I. Eur. J. Immunol. 30, 1496–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Snyder, H.L., Yewdell, J.W. & Bennink, J.R. Trimming of antigenic peptides in an early secretory compartment. J. Exp. Med. 180, 2389–2394 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Snyder, H.L., Bacik, I., Yewdell, J.W., Behrens, T.W. & Bennink, J.R. Promiscuous liberation of MHC-class I-binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur. J. Immunol. 28, 1339–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Roelse, J., Gromme, M., Momburg, F., Hammerling, G.J. & Neefjes, J.J. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J. Exp. Med. 180, 1591–1597 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Paz, P., Brouwenstijn, N., Perry, R. & Shastri, N. Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 11, 241–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Brouwenstijn, N., Serwold, T. & Shastri, N. MHC class I molecules can direct proteolytic cleavage of antigenic precursors in the endoplasmic reticulum. Immunity 15, 95–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Komlosh, A. et al. A role for a novel luminal endoplasmic reticulum aminopeptidase in final trimming of 26 S proteasome-generated major histocompatability complex class I antigenic peptides. J. Biol. Chem. 276, 30050–30056 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Momburg, F., Neefjes, J.J. & Hammerling, G.J. Peptide selection by MHC-encoded TAP transporters. Curr. Opin. Immunol. 6, 32–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Lauvau, G. et al. Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells. J. Exp. Med. 190, 1227–1240 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Serwold, T., Gaw, S. & Shastri, N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nature Immunol. 2, 644–651 (2001).

    Article  CAS  Google Scholar 

  24. Knuehl, C. et al. The murine cytomegalovirus pp89 immunodominant H-2Ld epitope is generated and translocated into the endoplasmic reticulum as an 11-mer precursor peptide. J. Immunol. 167, 1515–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Saric, T. et al. ERAP1, an interferon γ-induced aminopeptidase in the endplasmic reticulum, that trims precursors to MHC class I-presented peptides. Nature Immunol. 3, 1169–1176 (2002).

    Article  CAS  Google Scholar 

  26. Hattori, A., Matsumoto, H., Mizutani, S. & Tsujimoto, M. Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase. J. Biochem. (Tokyo) 125, 931–938 (1999).

    Article  CAS  Google Scholar 

  27. Schomburg, L., Kollmus, H., Friedrichsen, S. & Bauer, K. Molecular characterization of a puromycin-insensitive leucyl-specific aminopeptidase, PILS-AP. Eur. J. Biochem. 267, 3198–3207 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Cascio, P., Hilton, C., Kisselev, A.F., Rock, K.L. & Goldberg, A.L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J. 20, 2357–2366 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Porgador, A., Yewdell, J.W., Deng, Y. Bennink, J.R. & Germain, R.N. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Rammensee, H.-G., Friede, T. & Stefanovic, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Lucchiari-Hartz, M. et al. Cytotoxic T lymphocyte epitopes of HIV-1 Nef: Generation of multiple definitive major histocompatibility complex class I ligands by proteasomes. J. Exp. Med. 17, 239–252 (2000).

    Article  Google Scholar 

  34. Gaczynska, M., Rock, K.L. & Goldberg, A.L. γ-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Driscoll, J., Brown, M.G., Finlay, D. & Monaco, J.J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365, 262–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Ahn, J.Y. et al. Primary structures of two homologous subunits of PA28, a γ-interferon-inducible protein activator of the 20S proteasome. FEBS Lett. 366, 37–42 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Cascio, P., Call, M., Petre, B.M., Walz, T. & Goldberg, A.L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 21, 2636–2645 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kohler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Restifo, N.P. et al. Antigen processing in vivo and the elicitation of primary cytotoxic T lymphocyte responses. J. Immunol. 154, 4414–4422 (1995).

    CAS  PubMed  Google Scholar 

  41. O'Neil, B.H. et al. Detection of shared MHC-restricted human melanoma antigens after vaccinia virus-mediated transduction of genes coding for HLA. J. Immunol. 151, 1410–1418 (1993).

    CAS  PubMed  Google Scholar 

  42. Hattori, A. et al. Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells. J. Biochem. (Tokyo) 128, 755–762 (2000).

    Article  CAS  Google Scholar 

  43. Parham, P., Barnstable, C.J. & Bodmer, W.F. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C antigens. J. Immunol. 123, 342–349 (1979).

    CAS  PubMed  Google Scholar 

  44. Parham, P. & Bodmer, W.F. Monoclonal antibody to a human histocompatibility alloantigen, HLA-A2. Nature 276, 397–399 (1978).

    Article  CAS  PubMed  Google Scholar 

  45. Stam, N.J., Spits, H. & Ploegh, H.L. Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J. Immunol. 137, 2299–2306 (1986).

    CAS  PubMed  Google Scholar 

  46. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Welsh, M. Brehm, T. Vedvick and particularly L. Selin for the gifts of synthetic peptides; A. Hattori and M. Tsujimoto for recombinant ERAP1; L. Stern and B. Scearce for helpful discussions; and S. Trombley for assistance in preparing this manuscript. Supported by grants from the NIH (to K. L. R. and A. L. G.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

York, I., Chang, SC., Saric, T. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat Immunol 3, 1177–1184 (2002). https://doi.org/10.1038/ni860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing