Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury

Abstract

The normal microflora of the skin includes staphylococcal species that will induce inflammation when present below the dermis but are tolerated on the epidermal surface without initiating inflammation. Here we reveal a previously unknown mechanism by which a product of staphylococci inhibits skin inflammation. This inhibition is mediated by staphylococcal lipoteichoic acid (LTA) and acts selectively on keratinocytes triggered through Toll-like receptor 3(TLR3). We show that TLR3 activation is required for normal inflammation after injury and that keratinocytes require TLR3 to respond to RNA from damaged cells with the release of inflammatory cytokines. Staphylococcal LTA inhibits both inflammatory cytokine release from keratinocytes and inflammation triggered by injury through a TLR2-dependent mechanism. To our knowledge, these findings show for the first time that the skin epithelium requires TLR3 for normal inflammation after wounding and that the microflora can modulate specific cutaneous inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S. epidermidis inhibits poly(I:C)-induced inflammatory cytokines produced by keratinocytes, and inflammation in mouse skin.
Figure 2: Inflammation in wounds is dependent on TLR3 and inhibited by S. epidermidis.
Figure 3: Staphylococcal LTA inhibits poly(I:C)-induced TNF-α.
Figure 4: Staphylococcal LTA induces TRAF1 to inhibit TNF-α.
Figure 5: TLR2 is required for LTA to inhibit skin inflammation after injury or injection of poly(I:C).

Similar content being viewed by others

References

  1. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  Google Scholar 

  2. Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  Google Scholar 

  3. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    Article  CAS  Google Scholar 

  4. Netea, M.G., Van der Meer, J.W. & Kullberg, B.J. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 12, 484–488 (2004).

    Article  CAS  Google Scholar 

  5. Kelly, D., Conway, S. & Aminov, R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 26, 326–333 (2005).

    Article  CAS  Google Scholar 

  6. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    Article  CAS  Google Scholar 

  7. Vandenbroucke, K. et al. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127, 502–513 (2004).

    Article  CAS  Google Scholar 

  8. Haller, D. et al. Transforming growth factor-β1 inhibits nonpathogenic Gram negative bacteria–induced NF-κB recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J. Biol. Chem. 278, 23851–23860 (2003).

    Article  CAS  Google Scholar 

  9. Marshak-Rothstein, A. & Rifkin, I.R. Immunologically active autoantigens: the role of Toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 25, 419–441 (2007).

    Article  CAS  Google Scholar 

  10. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  11. Matzinger, P. Tolerance, danger and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  12. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  13. Ziebuhr, W. et al. Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int. J. Antimicrob. Agents 28 Suppl 1, S14–S20 (2006).

    Article  CAS  Google Scholar 

  14. Bibel, D.J. et al. Competitive adherence as a mechanism of bacterial interference. Can. J. Microbiol. 29, 700–703 (1983).

    Article  CAS  Google Scholar 

  15. Lebre, M.C. et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J. Invest. Dermatol. 127, 331–341 (2007).

    Article  CAS  Google Scholar 

  16. Pivarcsi, A. et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int. Immunol. 15, 721–730 (2003).

    Article  CAS  Google Scholar 

  17. Baker, B.S., Ovigne, J.M., Powles, A.V., Corcoran, S. & Fry, L. Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br. J. Dermatol. 148, 670–679 (2003).

    Article  CAS  Google Scholar 

  18. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  19. Fujimoto, C., Nakagawa, Y., Ohara, K. & Takahashi, H. Polyriboinosinic polyribocytidylic acid [poly(I:C)]/TLR3 signaling allows class I processing of exogenous protein and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int. Immunol. 16, 55–63 (2004).

    Article  CAS  Google Scholar 

  20. Cavassani, K.A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  Google Scholar 

  21. Brown, D.L., Kao, W.W. & Greenhalgh, D.G. Apoptosis down-regulates inflammation under the advancing epithelial wound edge: delayed patterns in diabetes and improvement with topical growth factors. Surgery 121, 372–380 (1997).

    Article  CAS  Google Scholar 

  22. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  Google Scholar 

  23. Vanhoutte, F. et al. Toll-like receptor (TLR)2 and TLR3 synergy and cross-inhibition in murine myeloid dendritic cells. Immunol. Lett. 116, 86–94 (2008).

    Article  CAS  Google Scholar 

  24. Ghosh, T.K. et al. TLR-TLR cross talk in human PBMC resulting in synergistic and antagonistic regulation of type-1 and 2 interferons, IL-12 and TNF-α. Int. Immunopharmacol. 7, 1111–1121 (2007).

    Article  CAS  Google Scholar 

  25. Lambert, P.A., Worthington, T., Tebbs, S.E. & Elliott, T.S. Lipid S, a novel Staphylococcus epidermidis exocellular antigen with potential for the serodiagnosis of infections. FEMS Immunol. Med. Microbiol. 29, 195–202 (2000).

    Article  CAS  Google Scholar 

  26. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245 (2004).

    Article  CAS  Google Scholar 

  27. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  Google Scholar 

  28. Hooper, L.V. Do symbiotic bacteria subvert host immunity? Nat. Rev. Microbiol. 7, 367–374 (2009).

    Article  CAS  Google Scholar 

  29. Timmerman, C.P. et al. Induction of release of tumor necrosis factor from human monocytes by staphylococci and staphylococcal peptidoglycans. Infect. Immun. 61, 4167–4172 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshioka, M. et al. Lipoteichoic acid downregulates FcεRI expression on human mast cells through Toll-like receptor 2. J. Allergy Clin. Immunol. 120, 452–461 (2007).

    Article  CAS  Google Scholar 

  31. Han, J. & Ulevitch, R.J. Limiting inflammatory responses during activation of innate immunity. Nat. Immunol. 6, 1198–1205 (2005).

    Article  CAS  Google Scholar 

  32. Stack, J. et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201, 1007–1018 (2005).

    Article  CAS  Google Scholar 

  33. Harte, M.T. et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med. 197, 343–351 (2003).

    Article  CAS  Google Scholar 

  34. Thompson, A.J. & Locarnini, S.A. Toll-like receptors, RIG-I–like RNA helicases and the antiviral innate immune response. Immunol. Cell Biol. 85, 435–445 (2007).

    Article  CAS  Google Scholar 

  35. Szpaderska, A.M. & DiPietro, L.A. Inflammation in surgical wound healing: friend or foe? Surgery 137, 571–573 (2005).

    Article  Google Scholar 

  36. Wetzler, C., Kampfer, H., Stallmeyer, B., Pfeilschifter, J. & Frank, S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J. Invest. Dermatol. 115, 245–253 (2000).

    Article  CAS  Google Scholar 

  37. Gründling, A. & Schneewind, O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104, 8478–8483 (2007).

    Article  Google Scholar 

  38. Schauber, J. et al. Histone acetylation in keratinocytes enables control of the expression of cathelicidin and CD14 by 1,25-dihydroxyvitamin D3 . J. Invest. Dermatol. 128, 816–824 (2007).

    Article  Google Scholar 

  39. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Peschel for advice regarding blocking LTA activity by the antibody; E. Raz from the University of California–San Diego for providing a C57BL/6 Tlr3-deficient mouse breeding pair; V. Nizet and E. Tistiskov for helpful discussion; G. Cheng, B. Beutler, R. Modlin and E. Raz for critical reading and helpful advice; and D. Bird for histological sections. This work was supported by US National Institutes of Health grants R56AI083358, R01AR052728 and R01 AI052453 and a US Veterans Administration Merit Award to R.L.G. and US National Institutes of Health grants DC00129 and DC006279 to A.F.R.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and R.L.G. designed the experiments; Y.L. performed most of the experiments and analyzed data; A.D.N. helped in culture of bone-marrow-derived dendritic cells and preparation of UVB-irradiated apoptotic and necrotic cells; T.N. and A.L. helped with mouse experiments; Y.Y. and Z.-R.W. designed the LPS-induced inflammation model; A.L.C. helped to perform initial experiments; L.V.H. provided germ-free mouse ear and intestine samples; R.R.S. and S.v.A. provided synthetic LTAs; K.A.R. showed how to make mouse wound models; C.-M.H. helped to modify the protocol for animal study; A.F.R. provided Tlr2-deficient mice; Y. L. and R.L.G. wrote and prepared the manuscript.

Corresponding author

Correspondence to Richard L Gallo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 2685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, Y., Di Nardo, A., Nakatsuji, T. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat Med 15, 1377–1382 (2009). https://doi.org/10.1038/nm.2062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.2062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing