Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Rapid host immune response and viral dynamics in herpes simplex virus-2 infection

Abstract

Herpes simplex virus-2 (HSV-2) is periodically shed throughout the human genital tract. Although a high viral load correlates with the development of genital ulcers, shedding also commonly occurs even when ulcers are absent, allowing for silent transmission during coitus and contributing to high seroprevalence of HSV-2 worldwide. Frequent viral reactivation occurs within ganglia despite diverse and complementary host and viral mechanisms that predispose toward latency, suggesting that viral replication may be constantly occurring in a small minority of neurons at these sites. Within genital mucosa, the in vivo expansion and clearance rates of HSV-2 are extremely rapid. Resident dendritic cells and memory HSV-2 specific T cells persist at prior sites of genital tract reactivation and, in conjunction with prompt innate recognition of infected cells, lead to rapid containment of infected cells. The fact that immune responses usually control viral replication in genital skin before lesions develop provides hope that enhancing such responses could lead to effective vaccines and immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of HSV-2 infection in women.
Figure 2: Schematic and histologic representation of healthy genital mucosa.
Figure 3: HSV-2 reactivation dynamics.
Figure 4: HSV-2 and host interactions in nerve root ganglia.
Figure 5: Host immunity in the genital mucosa.

Similar content being viewed by others

References

  1. Whitley, R.J. & Lakeman, F. Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin. Infect. Dis. 20, 414–420 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Flewett, T.H., Parker, R.G. & Philip, W.M. Acute hepatitis due to herpes simplex virus in an adult. J. Clin. Pathol. 22, 60–66 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hull, H.F., Blumhagen, J.D., Benjamin, D. & Corey, L. Herpes simplex viral pneumonitis in childhood. J. Pediatr. 104, 211–215 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, Z.A. et al. Effects on infants of a first episode of genital herpes during pregnancy. N. Engl. J. Med. 317, 1246–1251 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, E.L. et al. Effect of maternal herpes simplex virus (HSV) serostatus and HSV type on risk of neonatal herpes. Acta Obstet. Gynecol. Scand. 86, 523–529 (2007).

    Article  PubMed  Google Scholar 

  6. Whitley, R. et al. Predictors of morbidity and mortality in neonates with herpes simplex virus infections. The National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. N. Engl. J. Med. 324, 450–454 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Okuku, H.S. et al. Factors associated with herpes simplex virus type 2 incidence in a cohort of human immunodeficiency virus type 1–seronegative Kenyan men and women reporting high-risk sexual behavior. Sex. Transm. Dis. 38, 837–844 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tobian, A.A. et al. Factors associated with the prevalence and incidence of herpes simplex virus type 2 infection among men in Rakai, Uganda. J. Infect. Dis. 199, 945–949 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sobngwi-Tambekou, J. et al. Effect of HSV-2 serostatus on acquisition of HIV by young men: results of a longitudinal study in Orange Farm, South Africa. J. Infect. Dis. 199, 958–964 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tobian, A.A. et al. Male circumcision and herpes simplex virus type 2 infection in female partners: a randomized trial in rakai, Uganda. J. Infect. Dis. 205, 486–490 (2012).

    Article  PubMed  Google Scholar 

  11. Looker, K.J., Garnett, G.P. & Schmid, G.P. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ. 86, 805–812, A (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Corey, L. & Wald, A. Genital herpes. in Sexually Transmitted Diseases (eds. Holmes, K.K. et al.) Ch. 21, 285–312 (McGraw-Hill, New York, 1999).

  13. Weiss, H. Epidemiology of herpes simplex virus type 2 infection in the developing world. Herpes 11 (suppl. 1), 24A–35A (2004).

    PubMed  Google Scholar 

  14. Serwadda, D. et al. Human immunodeficiency virus acquisition associated with genital ulcer disease and herpes simplex virus type 2 infection: a nested case-control study in Rakai, Uganda. J. Infect. Dis. 188, 1492–1497 (2003).

    Article  PubMed  Google Scholar 

  15. Wald, A. & Link, K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2–seropositive persons: a meta-analysis. J. Infect. Dis. 185, 45–52 (2002).

    Article  PubMed  Google Scholar 

  16. Freeman, E.E. et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20, 73–83 (2006).

    Article  PubMed  Google Scholar 

  17. Freeman, E.E. et al. Proportion of new HIV infections attributable to herpes simplex 2 increases over time: simulations of the changing role of sexually transmitted infections in sub-Saharan African HIV epidemics. Sex. Transm. Infect. 83 Suppl 1, i17–i24 (2007).

    Article  PubMed  Google Scholar 

  18. Abu-Raddad, L.J. et al. Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PLoS ONE 3, e2230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wald, A. et al. Frequent genital herpes simplex virus 2 shedding in immunocompetent women. Effect of acyclovir treatment. J. Clin. Invest. 99, 1092–1097 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sacks, S.L. et al. Introduction: Is viral shedding a surrogate marker for transmission of genital herpes? Antiviral Res. 63 (suppl. 1), S3–S9 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Langenberg, A.G., Corey, L., Ashley, R.L., Leong, W.P. & Straus, S.E. A prospective study of new infections with herpes simplex virus type 1 and type 2. Chiron HSV Vaccine Study Group. N. Engl. J. Med. 341, 1432–1438 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Tronstein, E. et al. Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. J. Am. Med. Assoc. 305, 1441–1449 (2011).

    Article  CAS  Google Scholar 

  23. Xu, F. et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. J. Am. Med. Assoc. 296, 964–973 (2006).

    Article  CAS  Google Scholar 

  24. Schiffer, J.T., Wald, A., Selke, S., Corey, L. & Magaret, A. The kinetics of mucosal herpes simplex virus-2 infection in humans: evidence for rapid viral-host interactions. J. Infect. Dis. 204, 554–561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phipps, W. et al. Persistent genital herpes simplex virus-2 shedding years following the first clinical episode. J. Infect. Dis. 203, 180–187 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wald, A. et al. Effect of condoms on reducing the transmission of herpes simplex virus type 2 from men to women. J. Am. Med. Assoc. 285, 3100–3106 (2001).

    Article  CAS  Google Scholar 

  27. Wald, A. et al. Knowledge of partners′ genital herpes protects against herpes simplex virus type 2 acquisition. J. Infect. Dis. 194, 42–52 (2006).

    Article  PubMed  Google Scholar 

  28. Mertz, G.J., Benedetti, J., Ashley, R., Selke, S.A. & Corey, L. Risk factors for the sexual transmission of genital herpes. Ann. Intern. Med. 116, 197–202 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Mertz, G.J. et al. Frequency of acquisition of first-episode genital infection with herpes simplex virus from symptomatic and asymptomatic source contacts. Sex. Transm. Dis. 12, 33–39 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Elion, G.B. et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl. Acad. Sci. USA 74, 5716–5720 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Schiffer, J.T., Magaret, A., Selke, S., Corey, L. & Wald, A. Detailed analysis of mucosal herpes simplex virus-2 replication kinetics with and without antiviral therapy. J. Antimicrob. Chemother. 66, 2593–2600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beutner, K.R. Valacyclovir: a review of its antiviral activity, pharmacokinetic properties, and clinical efficacy. Antiviral Res. 28, 281–290 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Cirelli, R., Herne, K., McCrary, M., Lee, P. & Tyring, S.K. Famciclovir: review of clinical efficacy and safety. Antiviral Res. 29, 141–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Johnston, C. et al. Standard-dose and high-dose daily antiviral therapy for short episodes of genital HSV-2 reactivation: three randomised, open-label, cross-over trials. Lancet 379, 641–647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corey, L. et al. Once-daily valacyclovir to reduce the risk of transmission of genital herpes. N. Engl. J. Med. 350, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Reyes, M. et al. Acyclovir-resistant genital herpes among persons attending sexually transmitted disease and human immunodeficiency virus clinics. Arch. Intern. Med. 163, 76–80 (2003).

    Article  PubMed  Google Scholar 

  37. Belshe, R.B. et al. Efficacy results of a trial of a herpes simplex vaccine. N. Engl. J. Med. 366, 34–43 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cohen, J. Immunology. Painful failure of promising genital herpes vaccine. Science 330, 304 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Whitley, R.J., Kimberlin, D.W. & Roizman, B. Herpes simplex viruses. Clin. Infect. Dis. 26, 541–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Roizman, B.K.D. Herpes simplex viruses.. in Fields Virology (eds. Knipe, D.M. et al.) 2501–2602 (Lippincott Williams & Wilkins, Philadelphia, 2007).

  41. Koelle, D.M. & Corey, L. Herpes simplex: insights on pathogenesis and possible vaccines. Annu. Rev. Med. 59, 381–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Corey, L., Adams, H.G., Brown, Z.A. & Holmes, K.K. Genital herpes simplex virus infections: clinical manifestations, course, and complications. Ann. Intern. Med. 98, 958–972 (1983).

    Article  CAS  PubMed  Google Scholar 

  43. McGraw, H.M. & Friedman, H.M. Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites. J. Virol. 83, 4791–4799 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McGraw, H.M., Awasthi, S., Wojcechowskyj, J.A. & Friedman, H.M. Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J. Virol. 83, 8315–8326 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schiffer, J.T. et al. Frequent release of low amounts of herpes simplex virus from neurons: results of a mathematical model. Sci. Transl. Med. 1, 7ra16 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mark, K.E. et al. Rapidly cleared episodes of herpes simplex virus reactivation in immunocompetent adults. J. Infect. Dis. 198, 1141–1149 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Crespi, C.M., Cumberland, W., Wald, A., Corey, L. & Blower, S. Longitudinal study of herpes simplex virus type 2 infection using viral dynamic modelling. Sex. Transm. Infect. 83, 359–364 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wald, A. et al. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. N. Engl. J. Med. 342, 844–850 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Magaret, A.S., Wald, A., Huang, M., Selke, S. & Corey, L. Optimizing PCR positivity criterion for detection of herpes simplex virus DNA on skin and mucosa. J. Clin. Microbiol. 45, 1618–1620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204, 595–603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stanberry, L.R., Kern, E.R., Richards, J.T. & Overall, J.C. Jr. Recurrent genital herpes simplex virus infection in guinea pigs. Intervirology 24, 226–231 (1985).

    Article  CAS  PubMed  Google Scholar 

  52. Scriba, M. Recurrent genital Herpes simplex virus (HSV) infection of guinea pigs. Med. Microbiol. Immunol. (Berl.) 162, 201–208 (1976).

    Article  CAS  Google Scholar 

  53. Bertke, A.S., Patel, A. & Krause, P.R. Herpes simplex virus latency-associated transcript sequence downstream of the promoter influences type-specific reactivation and viral neurotropism. J. Virol. 81, 6605–6613 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, K., Lau, T., Morales, M., Mont, E. & Straus, S. Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level. J. Virol. 79, 14079–14087 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ohashi, M., Bertke, A.S., Patel, A. & Krause, P.R. Spread of herpes simplex virus to the spinal cord is independent of spread to dorsal root ganglia. J. Virol. 85, 3030–3032 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Stevens, J.G. C.M. Latent herpes simplex virus in spinal ganglia. Science 173, 843 (1971).

    Article  CAS  PubMed  Google Scholar 

  57. Snyder, A., Polcicova, K. & Johnson, D.C. Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J. Virol. 82, 10613–10624 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stevens, J.G., Haarr, L., Porter, D.D., Cook, M.L. & Wagner, E.K. Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J. Infect. Dis. 158, 117–123 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, X.P., Mata, M., Kelley, M., Glorioso, J. & Fink, D. The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection. J. Neurovirol. 8, 204–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Feldman, L.T. et al. Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc. Natl. Acad. Sci. USA 99, 978–983 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, T., Khanna, K., Chen, X., Fink, D. & Hendricks, R. CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J. Exp. Med. 191, 1459–1466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Decman, V., Kinchington, P.R., Harvey, S.A. & Hendricks, R.L. Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J. Virol. 79, 10339–10347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perng, G.C. et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287, 1500–1503 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Jiang, X. et al. The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B–induced apoptosis and CD8 T-cell killing. J. Virol. 85, 2325–2332 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Umbach, J.L. et al. Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2. J. Virol. 84, 1189–1192 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Umbach, J.L. et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Knipe, D.M. & Cliffe, A. Chromatin control of herpes simplex virus lytic and latent infection. Nat. Rev. Microbiol. 6, 211–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Verjans, G.M. et al. Selective retention of herpes simplex virus–specific T cells in latently infected human trigeminal ganglia. Proc. Natl. Acad. Sci. USA 104, 3496–3501 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Murray, J.M., Wieland, S.F., Purcell, R.H. & Chisari, F.V. Dynamics of hepatitis B virus clearance in chimpanzees. Proc. Natl. Acad. Sci. USA 102, 17780–17785 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Frank, G.M. et al. Early CD4+ T cell help prevents partial CD8+ T cell exhaustion and promotes maintenance of herpes simplex virus 1 latency. J. Immunol. 184, 277–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, T., Khanna, K., Carriere, B. & Hendricks, R. γ interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J. Virol. 75, 11178–11184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Knickelbein, J.E. et al. Noncytotoxic lytic granule–mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322, 268–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Divito, S., Cherpes, T.L. & Hendricks, R.L. A triple entente: virus, neurons, and CD8+ T cells maintain HSV-1 latency. Immunol. Res. 36, 119–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Hoshino, Y., Qin, J., Follmann, D., Cohen, J.I. & Straus, S.E. The number of herpes simplex virus–infected neurons and the number of viral genome copies per neuron correlate with the latent viral load in ganglia. Virology 372, 56–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Hoshino, Y., Pesnicak, L., Cohen, J. & Straus, S. Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells. J. Virol. 81, 8157–8164 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hill, J.M. et al. Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J. Virol. 70, 3137–3141 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoshino, Y. et al. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs. J. Virol. 79, 410–418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stanberry, L.R., Kern, E.R., Richards, J.T., Abbott, T.M. & Overall, J.C. Jr. Genital herpes in guinea pigs: pathogenesis of the primary infection and description of recurrent disease. J. Infect. Dis. 146, 397–404 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Bourne, N. et al. Herpes simplex virus (HSV) type 2 glycoprotein D subunit vaccines and protection against genital HSV-1 or HSV-2 disease in guinea pigs. J. Infect. Dis. 187, 542–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Bourne, N., Milligan, G.N., Stanberry, L.R., Stegall, R. & Pyles, R.B. Impact of immunization with glycoprotein D2/AS04 on herpes simplex virus type 2 shedding into the genital tract in guinea pigs that become infected. J. Infect. Dis. 192, 2117–2123 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Leoni, V., Gianni, T., Salvioli, S. & Campadelli-Fiume, G. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κB. J. Virol. 86, 6555–6562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hargett, D., Rice, S. & Bachenheimer, S.L. Herpes simplex virus type 1 ICP27-dependent activation of NF-κB. J. Virol. 80, 10565–10578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Niehues, T. et al. Nuclear factor κB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J. Allergy Clin. Immunol. 114, 1456–1462 (2004).

    Article  PubMed  Google Scholar 

  84. Guo, Y. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208, 2083–2098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sancho-Shimizu, V. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J. Clin. Invest. 121, 4889–4902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sato, A., Linehan, M.M. & Iwasaki, A. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc. Natl. Acad. Sci. USA 103, 17343–17348 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Lund, J.M., Linehan, M.M., Iijima, N. & Iwasaki, A. Cutting Edge: Plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J. Immunol. 177, 7510–7514 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Sancho-Shimizu, V. et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr. Opin. Allergy Clin. Immunol. 7, 495–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Mikloska, Z. et al. In vivo production of cytokines and β (C-C) chemokines in human recurrent herpes simplex lesions—do herpes simplex virus-infected keratinocytes contribute to their production? J. Infect. Dis. 177, 827–838 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Overall, J.C. Jr., Spruance, S.L. & Green, J.A. Viral-induced leukocyte interferon in vesicle fluid from lesions of recurrent herpes labialis. J. Infect. Dis. 143, 543–547 (1981).

    Article  PubMed  Google Scholar 

  92. Torseth, J.W., Nickoloff, B.J., Basham, T.Y. & Merigan, T.C. β interferon produced by keratinocytes in human cutaneous infection with herpes simplex virus. J. Infect. Dis. 155, 641–648 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Mikloska, Z. & Cunningham, A.L. α and γ interferons inhibit herpes simplex virus type 1 infection and spread in epidermal cells after axonal transmission. J. Virol. 75, 11821–11826 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng, T. et al. Evasion of the mucosal innate immune system by herpes simplex virus type 2. J. Virol. 83, 12559–12568 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Otani, T. & Mori, R. The effects of ultraviolet irradiation of the skin on herpes simplex virus infection: alteration in immune function mediated by epidermal cells and in the course of infection. Arch. Virol. 96, 1–15 (1987).

    Article  CAS  PubMed  Google Scholar 

  97. Kaneko, K. et al. cis-Urocanic acid initiates gene transcription in primary human keratinocytes. J. Immunol. 181, 217–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Garssen, J., van der Molen, R., de Klerk, A., Norval, M. & van Loveren, H. Effects of UV irradiation on skin and nonskin-associated herpes simplex virus infections in rats. Photochem. Photobiol. 72, 645–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Mark, K.E. et al. Topical resiquimod 0.01% gel decreases herpes simplex virus type 2 genital shedding: a randomized, controlled trial. J. Infect. Dis. 195, 1324–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Cunningham, A.L., Turner, R.R., Miller, A.C., Para, M.F. & Merigan, T.C. Evolution of recurrent herpes simplex lesions. An immunohistologic study. J. Clin. Invest. 75, 226–233 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Donaghy, H. et al. Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection. J. Virol. 83, 1952–1961 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Koelle, D.M., Huang, J., Hensel, M.T. & McClurkan, C.L. Innate immune responses to herpes simplex virus type 2 influence skin homing molecule expression by memory CD4+ lymphocytes. J. Virol. 80, 2863–2872 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. González, J.C. et al. Expression of cutaneous lymphocyte-associated antigen and E-selectin ligand by circulating human memory CD4+ T lymphocytes specific for herpes simplex virus type 2. J. Infect. Dis. 191, 243–254 (2005).

    Article  PubMed  Google Scholar 

  104. Yoneyama, H. et al. Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425–435 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dalloul, A. et al. Severe herpes virus (HSV-2) infection in two patients with myelodysplasia and undetectable NK cells and plasmacytoid dendritic cells in the blood. J. Clin. Virol. 30, 329–336 (2004).

    Article  PubMed  Google Scholar 

  106. Abbo, L. et al. Selective defect in plasmacyoid dendritic cell function in a patient with AIDS-associated atypical genital herpes simplex vegetans treated with imiquimod. Clin. Infect. Dis. 44, e25–e27 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Wakim, L.M., Waithman, J., van Rooijen, N., Heath, W.R. & Carbone, F.R. Dendritic cell–induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Bosnjak, L. et al. Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J. Immunol. 174, 2220–2227 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Mueller, S.N., Jones, C.M., Smith, C.M., Heath, W.R. & Carbone, F.R. Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J. Exp. Med. 195, 651–656 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Allan, R.S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Allan, R.S. et al. Migratory dendritic cells transfer antigen to a lymph node–resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10, 488–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Puttur, F.K. et al. Herpes simplex virus infects skin γδ T cells before Langerhans cells and impedes migration of infected Langerhans cells by inducing apoptosis and blocking E-cadherin downregulation. J. Immunol. 185, 477–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Lee, H.K. et al. Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. J. Exp. Med. 206, 359–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Heath, W.R. & Carbone, F.R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10, 1237–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Cohen, G.H. et al. Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. J. Virol. 49, 102–108 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Brown, Z.A. et al. Neonatal herpes simplex virus infection in relation to asymptomatic maternal infection at the time of labor. N. Engl. J. Med. 324, 1247–1252 (1991).

    Article  CAS  PubMed  Google Scholar 

  118. Bourne, N., Pyles, R.B., Bernstein, D.I. & Stanberry, L.R. Modification of primary and recurrent genital herpes in guinea pigs by passive immunization. J. Gen. Virol. 83, 2797–2801 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Mikloska, Z., Sanna, P. & Cunningham, A. Neutralizing antibodies inhibit axonal spread of herpes simplex virus type 1 to epidermal cells in vitro. J. Virol. 73, 5934–5944 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, Z. et al. Transfer of IgG in the female genital tract by MHC class I–related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc. Natl. Acad. Sci. USA 108, 4388–4393 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Kwant-Mitchell, A., Ashkar, A.A. & Rosenthal, K.L. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J. Virol. 83, 10664–10676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Awasthi, S. et al. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J. Virol. 85, 10472–10486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stanberry, L.R. et al. Glycoprotein-D–adjuvant vaccine to prevent genital herpes. N. Engl. J. Med. 347, 1652–1661 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Corey, L. et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. J. Am. Med. Assoc. 282, 331–340 (1999).

    Article  CAS  Google Scholar 

  125. Lubinski, J.M. et al. Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J. Virol. 76, 9232–9241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lubinski, J. et al. In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J. Exp. Med. 190, 1637–1646 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Collins, W.J. & Johnson, D.C. Herpes simplex virus gE/gI expressed in epithelial cells interferes with cell-to-cell spread. J. Virol. 77, 2686–2695 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhu, J. et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat. Med. 15, 886–892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Iijima, N. et al. Dendritic cells and B cells maximize mucosal TH1 memory response to herpes simplex virus. J. Exp. Med. 205, 3041–3052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wakim, L.M., Jones, C.M., Gebhardt, T., Preston, C.M. & Carbone, F.R. CD8(+) T cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol. Cell Biol. 86, 666–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Mackay, L.K. et al. Maintenance of T cell function in the face of chronic antigen stimulation and repeated reactivation for a latent virus infection. J. Immunol. 188, 2173–2178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Koelle, D.M., Abbo, H., Peck, A., Ziegweid, K. & Corey, L. Direct recovery of herpes simplex virus (HSV)-specific T lymphocyte clones from recurrent genital HSV-2 lesions. J. Infect. Dis. 169, 956–961 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Koelle, D.M. et al. CD8 CTL from genital herpes simplex lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells. J. Immunol. 166, 4049–4058 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Koelle, D.M. et al. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Invest. 101, 1500–1508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peng, T. et al. An effector phenotype of CD8+ T cells at the junction epithelium during clinical quiescence of herpes simplex virus 2 infection. J. Virol. 86, 10587–10596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T cell help. Nature 462, 510–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Koelle, D.M. et al. Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus. J. Clin. Invest. 110, 537–548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stock, A.T., Jones, C.M., Heath, W.R. & Carbone, F.R. Rapid recruitment and activation of CD8+ T cells after herpes simplex virus type 1 skin infection. Immunol. Cell Biol. 89, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Posavad, C.M., Koelle, D., Shaughnessy, M. & Corey, L. Severe genital herpes infections in HIV-infected individuals with impaired herpes simplex virus–specific CD8+ cytotoxic T lymphocyte responses. Proc. Natl. Acad. Sci. USA 94, 10289–10294 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Mueller, S.N. et al. The early expression of glycoprotein B from herpes simplex virus can be detected by antigen-specific CD8+ T cells. J. Virol. 77, 2445–2451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Snyder, C.M. et al. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29, 650–659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Polcicova, K., Goldsmith, K., Rainish, B.L., Wisner, T.W. & Johnson, D.C. The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread: evidence for gE/gI receptors. J. Virol. 79, 11990–12001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schiffer, J.T. et al. Mucosal host immune response predicts the severity and duration of herpes simplex virus-2 genital tract shedding episodes. Proc. Natl. Acad. Sci. USA 107, 18973–18978 (2010).

    Article  PubMed  Google Scholar 

  147. Aubert, M., Yoon, M., Sloan, D.D., Spear, P.G. & Jerome, K.R. The virological synapse facilitates herpes simplex virus entry into T cells. J. Virol. 83, 6171–6183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sloan, D.D. et al. Inhibition of TCR signaling by herpes simplex virus. J. Immunol. 176, 1825–1833 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Tata, S. et al. Overlapping reactivations of herpes simplex virus type 2 in the genital and perianal mucosa. J. Infect. Dis. 201, 499–504 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Alsallaq, R.A. et al. Population level impact of an imperfect prophylactic vaccine for herpes simplex virus-2. Sex. Transm. Dis. 37, 290–297 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Miner for her contribution in the editorial preparation of the manuscript and to our reviewers for their insightful suggestions. This work was supported by US National Institutes of Health grants P01 AI030731, R37 AI042528 and K23 AI087206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua T Schiffer.

Ethics declarations

Competing interests

L.C. is a member of the scientific advisory board and a founder of Immune Design Corporation, which is considering development of an immunotherapeutic HSV-2 vaccine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffer, J., Corey, L. Rapid host immune response and viral dynamics in herpes simplex virus-2 infection. Nat Med 19, 280–288 (2013). https://doi.org/10.1038/nm.3103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.3103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing