Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses

Abstract

Although susceptibility of neurons in the brain to microbial infection is a major determinant of clinical outcome, little is known about the molecular factors governing this vulnerability. Here we show that two types of neurons from distinct brain regions showed differential permissivity to replication of several positive-stranded RNA viruses. Granule cell neurons of the cerebellum and cortical neurons from the cerebral cortex have unique innate immune programs that confer differential susceptibility to viral infection ex vivo and in vivo. By transducing cortical neurons with genes that were expressed more highly in granule cell neurons, we identified three interferon-stimulated genes (ISGs; Ifi27, Irg1 and Rsad2 (also known as Viperin)) that mediated the antiviral effects against different neurotropic viruses. Moreover, we found that the epigenetic state and microRNA (miRNA)-mediated regulation of ISGs correlates with enhanced antiviral response in granule cell neurons. Thus, neurons from evolutionarily distinct brain regions have unique innate immune signatures, which probably contribute to their relative permissiveness to infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Granule cell neurons are less susceptible to virus infection and more sensitive to the antiviral effects of IFN-β than cortical neurons.
Figure 2: Microarray analysis revealing differential regulation of antiviral genes in granule cell neurons and cortical neurons.
Figure 3: Key ISGs reach peak expression sooner and at higher levels in granule cell neurons.
Figure 4: ISGs with antiviral activity identified in neurons using a lentivirus transduction system.
Figure 5: Epigenetic and miRNA-mediated control mechanism of ISGs.
Figure 6: Differential WNV infection of neurons in the brains of mice and humans.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Ireland, D.D.C., Stohlman, S.A., Hinton, D.R., Atkinson, R. & Bergmann, C.C. Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells. J. Virol. 82, 300–310 (2008).

    CAS  PubMed  Google Scholar 

  2. Schoneboom, B.A., Lee, J.S. & Grieder, F.B. Early expression of IFN-α/β and iNOS in the brains of Venezuelan equine encephalitis virus–infected mice. J. Interferon Cytokine Res. 20, 205–215 (2000).

    CAS  PubMed  Google Scholar 

  3. McGavern, D.B. & Kang, S.S. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 11, 318–329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Delhaye, S. et al. Neurons produce type I interferon during viral encephalitis. Proc. Natl. Acad. Sci. USA 103, 7835–7840 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, J. & Campbell, I.L. Innate STAT1-dependent genomic response of neurons to the antiviral cytokine α interferon. J. Virol. 79, 8295–8302 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Griffin, D.E. Immune responses to RNA-virus infections of the CNS. Nat. Rev. Immunol. 3, 493–502 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chakraborty, S., Nazmi, A., Dutta, K. & Basu, A. Neurons under viral attack: victims or warriors? Neurochem. Int. 56, 727–735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Omalu, B.I., Shakir, A.A., Wang, G., Lipkin, W.I. & Wiley, C.A. Fatal fulminant pan-meningo-polioencephalitis due to West Nile virus. Brain Pathol. 13, 465–472 (2003).

    PubMed  Google Scholar 

  9. Gordon, B., Selnes, O.A., Hart, J. Jr., Hanley, D.F. & Whitley, R.J. Long-term cognitive sequelae of acyclovir-treated herpes simplex encephalitis. Arch. Neurol. 47, 646–647 (1990).

    CAS  PubMed  Google Scholar 

  10. Samuel, M.A. & Diamond, M.S. α/β interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol. 79, 13350–13361 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lazear, H.M., Pinto, A.K., Vogt, M.R., Gale, M. Jr. & Diamond, M.S. β interferon controls West Nile virus infection and pathogenesis in mice. J. Virol. 85, 7186–7194 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Armah, H.B. et al. Systemic distribution of West Nile virus infection: postmortem immunohistochemical study of six cases. Brain Pathol. 17, 354–362 (2007).

    PubMed  PubMed Central  Google Scholar 

  13. Keller, B.C. et al. Resistance to α/β interferon is a determinant of West Nile virus replication fitness and virulence. J. Virol. 80, 9424–9434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Perwitasari, O., Cho, H., Diamond, M.S. & Gale, M. Jr Inhibitor of κB kinase ɛ (IKKɛ), STAT1, and IFIT2 proteins define novel innate immune effector pathway against West Nile virus infection. J. Biol. Chem. 286, 44412–44423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brien, J.D. et al. Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8+ T cell immune responses against West Nile virus infection. PLoS Pathog. 7, e1002230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang, T.C. et al. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J. Exp. Med. 209, 661–669 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    CAS  PubMed  Google Scholar 

  19. Parekh, B.S. & Maniatis, T. Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-β promoter. Mol. Cell 3, 125–129 (1999).

    CAS  PubMed  Google Scholar 

  20. Shestakova, E., Bandu, M.T., Doly, J. & Bonnefoy, E. Inhibition of histone deacetylation induces constitutive derepression of the β interferon promoter and confers antiviral activity. J. Virol. 75, 3444–3452 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Horvai, A.E. et al. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci. USA 94, 1074–1079 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhattacharya, S. et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 383, 344–347 (1996).

    CAS  PubMed  Google Scholar 

  23. Look, D.C. et al. Direct suppression of Stat1 function during adenoviral infection. Immunity 9, 871–880 (1998).

    CAS  PubMed  Google Scholar 

  24. Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA 102, 16426–16431 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wayman, G.A. et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl. Acad. Sci. USA 105, 9093–9098 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagos, D. et al. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat. Cell Biol. 12, 513–519 (2010).

    CAS  PubMed  Google Scholar 

  27. Olsen, L., Klausen, M., Helboe, L., Nielsen, F.C. & Werge, T. MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats. PLoS ONE 4, e7225 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Kim, J. et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Contestabile, A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum 1, 41–55 (2002).

    CAS  PubMed  Google Scholar 

  30. Fine, E.J., Ionita, C.C. & Lohr, L. The history of the development of the cerebellar examination. Semin. Neurol. 22, 375–384 (2002).

    PubMed  Google Scholar 

  31. Fitting, S. et al. Regional heterogeneity and diversity in cytokine and chemokine production by astroglia: differential responses to HIV-1 Tat, gp120, and morphine revealed by multiplex analysis. J. Proteome Res. 9, 1795–1804 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Labrada, L., Liang, X.H., Zheng, W., Johnston, C. & Levine, B. Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J. Virol. 76, 11688–11703 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Itsui, Y. et al. Expressional screening of interferon-stimulated genes for antiviral activity against hepatitis C virus replication. J. Viral Hepat. 13, 690–700 (2006).

    CAS  PubMed  Google Scholar 

  34. Degrandi, D., Hoffmann, R., Beuter-Gunia, C. & Pfeffer, K. The proinflammatory cytokine-induced IRG1 protein associates with mitochondria. J. Interferon Cytokine Res. 29, 55–67 (2009).

    CAS  PubMed  Google Scholar 

  35. Tal, M.C. & Iwasaki, A. Mitoxosome: a mitochondrial platform for cross-talk between cellular stress and antiviral signaling. Immunol. Rev. 243, 215–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Szretter, K.J. et al. The interferon-inducible gene viperin restricts West Nile virus pathogenesis. J. Virol. 85, 11557–11566 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fitzgerald, K.A. The interferon inducible gene: Viperin. J. Interferon Cytokine Res. 31, 131–135 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fentress, S.J. et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii–secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8, 484–495 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinfeldt, T. et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol. 8, e1000576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dellacasa-Lindberg, I., Hitziger, N. & Barragan, A. Localized recrudescence of Toxoplasma infections in the central nervous system of immunocompromised mice assessed by in vivo bioluminescence imaging. Microbes Infect. 9, 1291–1298 (2007).

    CAS  PubMed  Google Scholar 

  41. Strittmatter, C., Lang, W., Wiestler, O.D. & Kleihues, P. The changing pattern of human immunodeficiency virus–associated cerebral toxoplasmosis: a study of 46 postmortem cases. Acta Neuropathol. 83, 475–481 (1992).

    CAS  PubMed  Google Scholar 

  42. Zhao, Y. et al. Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages. J. Immunol. 182, 3775–3781 (2009).

    CAS  PubMed  Google Scholar 

  43. Cheon, H. & Stark, G.R. Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proc. Natl. Acad. Sci. USA 106, 9373–9378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu, X., Chakravarty, S.D. & Ivashkiv, L.B. Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol. Rev. 226, 41–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nusinzon, I. & Horvath, C.M. Positive and negative regulation of the innate antiviral response and β interferon gene expression by deacetylation. Mol. Cell Biol. 26, 3106–3113 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zupkovitz, G. et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell Biol. 26, 7913–7928 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Klein, R.S. et al. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J. Virol. 79, 11457–11466 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Coley, S.E. et al. Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J. Virol. 79, 3097–3106 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    CAS  PubMed  Google Scholar 

  51. Oliphant, T. et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 11, 522–530 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shrestha, B., Gottlieb, D. & Diamond, M.S. Infection and injury of neurons by West Nile encephalitis virus. J. Virol. 77, 13203–13213 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank O. Koues and E. Oltz for the experimental discussions and suggestions, J. Patel and R. Klein for their contribution to the initial phase of the study, B. Bradel-Tretheway for help with initial study design and microarray analysis, Y. Sasaki (Washington University) for the lentiviral plasmids, A. Barrett (University of Texas Medical Branch) for the SLEV, I. Frolov (University of Alabama, Birmingham) for the VEEV, H.W. Virgin (Washington University) for the Stat1−/− mice and B.K. Kleinschmidt-DeMasters (University of Colorado) and C.A. Wiley (University of Pittsburgh) for the human brain autopsy samples. US National Institutes of Health grants U54 AI081680 (Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research), U19 AI083019 (M.G. and M.S.D.) and R01 AI074973 (M.G. and M.S.D.) supported this work. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.C. and K.J.S. performed the experiments. H.C. and S.C.P. analyzed the microarray data. H.C. and M.S.D. designed the experiments and wrote the initial draft of the manuscript. M.G.K. and M.G. contributed to the study design and preparation of the manuscript.

Corresponding author

Correspondence to Michael S Diamond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–3 and Supplementary Methods (PDF 2064 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, H., Proll, S., Szretter, K. et al. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat Med 19, 458–464 (2013). https://doi.org/10.1038/nm.3108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.3108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing