Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of pre-adapted HIV transmission

Abstract

Human leukocyte antigen class I (HLA)-restricted CD8+ T lymphocyte (CTL) responses are crucial to HIV-1 control. Although HIV can evade these responses, the longer-term impact of viral escape mutants remains unclear, as these variants can also reduce intrinsic viral fitness. To address this, we here developed a metric to determine the degree of HIV adaptation to an HLA profile. We demonstrate that transmission of viruses that are pre-adapted to the HLA molecules expressed in the recipient is associated with impaired immunogenicity, elevated viral load and accelerated CD4+ T cell decline. Furthermore, the extent of pre-adaptation among circulating viruses explains much of the variation in outcomes attributed to the expression of certain HLA alleles. Thus, viral pre-adaptation exploits 'holes' in the immune response. Accounting for these holes may be key for vaccine strategies seeking to elicit functional responses from viral variants, and to HIV cure strategies that require broad CTL responses to achieve successful eradication of HIV reservoirs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adaptation of viral sequence to HLA-I alleles.
Figure 2: Autologous adaptation predicts faster disease progression.
Figure 3: Transmitted adaptation predicts clinical prognosis and largely explains which HLA alleles are protective.
Figure 4: Adaptation affects HLA–VL associations and heritability estimates.
Figure 5: CTL responses against pre-adapted transmitted epitopes are dysfunctional.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Goonetilleke, N. et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 206, 1253–1272 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pereyra, F. et al. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. J. Virol. 88, 12937–12948 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Carlson, J.M., Le, A.Q., Shahid, A. & Brumme, Z.L. HIV-1 adaptation to HLA: a window into virus–host immune interactions. Trends Microbiol. 23, 212–224 (2015).

    CAS  PubMed  Google Scholar 

  4. Martinez-Picado, J. et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol. 80, 3617–3623 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Boutwell, C.L., Rowley, C.F. & Essex, M. Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-lymphocyte escape mutations in HLA-B57 epitopes of capsid protein. J. Virol. 83, 2460–2468 (2009).

    CAS  PubMed  Google Scholar 

  6. Wright, J.K. et al. Impact of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity. J. Virol. 86, 3193–3199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goepfert, P.A. et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J. Exp. Med. 205, 1009–1017 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chopera, D.R. et al. Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage. PLoS Pathog. 4, e1000033 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Carlson, J.M. et al. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 345, 1254031 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Prince, J.L. et al. Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS Pathog. 8, e1003041 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Feeney, M.E. et al. Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J. Virol. 78, 8927–8930 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Keane, N.M. et al. High-avidity, high-IFNγ-producing CD8 T-cell responses following immune selection during HIV-1 infection. Immunol. Cell Biol. 90, 224–234 (2012).

    CAS  PubMed  Google Scholar 

  13. Almeida, C.-A.M. et al. Translation of HLA-HIV associations to the cellular level: HIV adapts to inflate CD8 T cell responses against Nef and HLA-adapted variant epitopes. J. Immunol. 187, 2502–2513 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Allen, T.M. et al. De novo generation of escape variant-specific CD8+ T-cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection. J. Virol. 79, 12952–12960 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Iglesias, M.C. et al. Escape from highly effective public CD8+ T-cell clonotypes by HIV. Blood 118, 2138–2149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ntale, R.S. et al. Temporal association of HLA-B*81:01- and B*39:10-mediated HIV-1 p24 sequence evolution with disease progression. J. Virol. 86, 12013–12024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Oxenius, A. et al. Loss of viral control in early HIV-1 infection is temporally associated with sequential escape from CD8+ T cell responses and decrease in HIV-1-specific CD4+ and CD8+ T cell frequencies. J. Infect. Dis. 190, 713–721 (2004).

    CAS  PubMed  Google Scholar 

  18. Goulder, P.J.R. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).

    CAS  PubMed  Google Scholar 

  19. Crawford, H. et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J. Exp. Med. 206, 909–921 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawashima, Y. et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458, 641–645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cotton, L.A. et al. Genotypic and functional impact of HIV-1 adaptation to its host population during the North American epidemic. PLoS Genet. 10, e1004295 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Payne, R. et al. Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. Proc. Natl. Acad. Sci. USA 111, E5393–E5400 (2014).

    CAS  PubMed  Google Scholar 

  23. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    CAS  PubMed  Google Scholar 

  24. Asquith, B., Edwards, C.T.T., Lipsitch, M. & McLean, A.R. Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol. 4, e90 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Iversen, A.K.N. et al. Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope. Nat. Immunol. 7, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  26. Korber, B.T., Letvin, N.L. & Haynes, B.F. T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J. Virol. 83, 8300–8314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rolland, M., Nickle, D.C. & Mullins, J.I. HIV-1 group M conserved elements vaccine. PLoS Pathog. 3, e157 (2007).

    PubMed  PubMed Central  Google Scholar 

  28. Mothe, B. et al. Definition of the viral targets of protective HIV-1-specific T cell responses. J. Transl. Med. 9, 208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Létourneau, S. et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2, e984 (2007).

    PubMed  PubMed Central  Google Scholar 

  30. Borthwick, N. et al. Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol. Ther. 22, 464–475 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fischer, W. et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat. Med. 13, 100–106 (2007).

    CAS  PubMed  Google Scholar 

  32. Fraser, C. et al. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343, 1243727 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. van Dorp, C.H., van Boven, M. & de Boer, R.J. Immuno-epidemiological modeling of HIV-1 predicts high heritability of the set-point virus load, while selection for CTL escape dominates virulence evolution. PLoS Comput. Biol. 10, e1003899 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Yewdell, J.W. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25, 533–543 (2006).

    CAS  PubMed  Google Scholar 

  35. Carlson, J.M. et al. Widespread impact of HLA restriction on immune control and escape pathways of HIV-1. J. Virol. 86, 5230–5243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Carlson, J.M. et al. Correlates of protective cellular immunity revealed by analysis of population-level immune escape pathways in HIV-1. J. Virol. 86, 13202–13216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miura, T. et al. HLA-associated viral mutations are common in human immunodeficiency virus type 1 elite controllers. J. Virol. 83, 3407–3412 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brockman, M.A. et al. Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. J. Virol. 84, 11937–11949 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, K.-H.G. et al. Progression to AIDS in South Africa is associated with both reverting and compensatory viral mutations. PLoS One 6, e19018 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med. 13, 46–53 (2007).

    CAS  PubMed  Google Scholar 

  41. Wright, J.K. et al. Influence of Gag-protease-mediated replication capacity on disease progression in individuals recently infected with HIV-1 subtype C. J. Virol. 85, 3996–4006 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Buchbinder, S.P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang, J. et al. HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res. Hum. Retroviruses 20, 19–25 (2004).

    CAS  PubMed  Google Scholar 

  44. Song, W. et al. Disparate associations of HLA class I markers with HIV-1 acquisition and control of viremia in an African population. PLoS One 6, e23469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Llano, A., Frahm, N. & Brander, C. in HIV Molecular Immunology (eds. Yusim, K. et al.) 3–24 (Los Alamos National Laboratory, 2009).

  46. McElrath, M.J. et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372, 1894–1905 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, M.K.P. et al. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J. Clin. Invest. 123, 380–393 (2013).

    CAS  PubMed  Google Scholar 

  48. Matthews, P.C. et al. Differential clade-specific HLA-B*3501 association with HIV-1 disease outcome is linked to immunogenicity of a single Gag epitope. J. Virol. 86, 12643–12654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Trachtenberg, E. et al. Advantage of rare HLA supertype in HIV disease progression. Nat. Med. 9, 928–935 (2003).

    CAS  PubMed  Google Scholar 

  50. Janes, H. et al. HIV-1 infections with multiple founders are associated with higher viral loads than infections with single founders. Nat. Med. 21, 1139–1141 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miles, J.J., Douek, D.C. & Price, D.A. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol. Cell Biol. 89, 375–387 (2011).

    CAS  PubMed  Google Scholar 

  52. Kløverpris, H.N. et al. CD8+ TCR bias and immunodominance in HIV-1 infection. J. Immunol. 194, 5329–5345 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Mailliard, R.B. et al. Selective induction of CTL helper rather than killer activity by natural epitope variants promotes dendritic cell-mediated HIV-1 dissemination. J. Immunol. 191, 2570–2580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rolland, M. et al. Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat. Med. 17, 366–371 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wright, J.K. et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters. J. Virol. 84, 10820–10831 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–775 (2004).

    CAS  PubMed  Google Scholar 

  58. Huang, K.-H.G. et al. Prevalence of HIV type-1 drug-associated mutations in pre-therapy patients in the Free State, South Africa. Antivir. Ther. 14, 975–984 (2009).

    CAS  PubMed  Google Scholar 

  59. Matthews, P.C. et al. HLA-A*7401-mediated control of HIV viremia is independent of its linkage disequilibrium with HLA-B*5703. J. Immunol. 186, 5675–5686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shapiro, R.L. et al. Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N. Engl. J. Med. 362, 2282–2294 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brumme, Z.L. et al. Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS Pathog. 3, e94 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Brumme, Z.L. et al. HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins. PLoS One 4, e6687 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Bhattacharya, T. et al. Founder effects in the assessment of HIV polymorphisms and HLA allele associations. Science 315, 1583–1586 (2007).

    CAS  PubMed  Google Scholar 

  64. Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    CAS  PubMed  Google Scholar 

  65. Mallal, S.A. The Western Australian HIV Cohort Study, Perth, Australia. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 17, S23–S27 (1998).

    PubMed  Google Scholar 

  66. John, M. et al. Adaptive interactions between HLA and HIV-1: highly divergent selection imposed by HLA class I molecules with common supertype motifs. J. Immunol. 184, 4368–4377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Haas, D.W. et al. A multi-investigator/institutional DNA bank for AIDS-related human genetic studies: AACTG Protocol A5128. HIV Clin. Trials 4, 287–300 (2003).

    PubMed  Google Scholar 

  68. Poon, A.F.Y. et al. The impact of clinical, demographic and risk factors on rates of HIV transmission: a population-based phylogenetic analysis in British Columbia, Canada. J. Infect. Dis. 211, 926–935 (2015).

    CAS  PubMed  Google Scholar 

  69. Miura, T. et al. Genetic characterization of human immunodeficiency virus type 1 in elite controllers: lack of gross genetic defects or common amino acid changes. J. Virol. 82, 8422–8430 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y.E. et al. Protective HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associated with viral escape mutations located in highly conserved regions of human immunodeficiency virus type 1. J. Virol. 83, 1845–1855 (2009).

    CAS  PubMed  Google Scholar 

  71. Henn, M.R. et al. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog. 8, e1002529 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Frahm, N. et al. Increased sequence diversity coverage improves detection of HIV-specific T cell responses. J. Immunol. 179, 6638–6650 (2007).

    CAS  PubMed  Google Scholar 

  73. McKenna, S.L. et al. Rapid HIV testing and counseling for voluntary testing centers in Africa. AIDS 11 (suppl. 1), S103–S110 (1997).

    PubMed  Google Scholar 

  74. Kempf, M.-C. et al. Enrollment and retention of HIV discordant couples in Lusaka, Zambia. J. Acquir. Immune Defic. Syndr. 47, 116–125 (2008).

    PubMed  Google Scholar 

  75. Allen, S. et al. Promotion of couples' voluntary counselling and testing for HIV through influential networks in two African capital cities. BMC Public Health 7, 349 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. Trask, S.A. et al. Molecular epidemiology of human immunodeficiency virus type 1 transmission in a heterosexual cohort of discordant couples in Zambia. J. Virol. 76, 397–405 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yue, L. et al. Cumulative impact of host and viral factors on HIV-1 viral-load control during early infection. J. Virol. 87, 708–715 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. McMichael, A.J., Borrow, P., Tomaras, G.D., Goonetilleke, N. & Haynes, B.F. The immune response during acute HIV-1 infection: clues for vaccine development. Nat. Rev. Immunol. 10, 11–23 (2010).

    CAS  PubMed  Google Scholar 

  79. Salazar-Gonzalez, J.F. et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 206, 1273–1289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sidney, J. et al. Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture. Curr. Protoc. Immunol. Chapter 18, Unit 18.3 (2013).

  81. Lundegaard, C. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 36, W509–W512 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lundegaard, C., Lund, O. & Nielsen, M. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics 24, 1397–1398 (2008).

    CAS  PubMed  Google Scholar 

  83. Bansal, A. et al. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription. J. Exp. Med. 207, 51–59 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bansal, A. et al. Immunological control of chronic HIV-1 infection: HLA-mediated immune function and viral evolution in adolescents. AIDS 21, 2387–2397 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bansal, A. et al. Multifunctional T-cell characteristics induced by a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine regimen given to healthy adults are dependent on the route and dose of administration. J. Virol. 82, 6458–6469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Roederer, M., Nozzi, J.L. & Nason, M.C. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A 79, 167–174 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Akinsiku, O.T., Bansal, A., Sabbaj, S., Heath, S.L. & Goepfert, P.A. Interleukin-2 production by polyfunctional HIV-1-specific CD8 T cells is associated with enhanced viral suppression. J. Acquir. Immune Defic. Syndr. 58, 132–140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ndung'u, T., Renjifo, B. & Essex, M. Construction and analysis of an infectious human immunodeficiency virus type 1 subtype C molecular clone. J. Virol. 75, 4964–4972 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Box, G.E.P. & Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Series B. Stat. Methodol. 26, 211–252 (1964).

    Google Scholar 

  90. Listgarten, J. et al. Statistical resolution of ambiguous HLA typing data. PLoS Comput. Biol. 4, e1000016 (2008).

    PubMed  PubMed Central  Google Scholar 

  91. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  PubMed  Google Scholar 

  92. Storey, J.D. The positive false discovery rate: a Bayesian interpretation and the q -value. Ann. Stat. 31, 2013–2035 (2003).

    Google Scholar 

  93. Vance, D.E., Mugavero, M., Willig, J., Raper, J.L. & Saag, M.S. Aging with HIV: a cross-sectional study of comorbidity prevalence and clinical characteristics across decades of life. J. Assoc. Nurses AIDS Care 22, 17–25 (2011).

    PubMed  Google Scholar 

  94. Carrington, M. & O'Brien, S.J. The influence of HLA genotype on AIDS. Annu. Rev. Med. 54, 535–551 (2003).

    CAS  PubMed  Google Scholar 

  95. Pereyra, F. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).

    Google Scholar 

  97. Self, S.G. & Liang, K.-Y. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82, 605 (1987).

    Google Scholar 

  98. Leslie, A. et al. Differential selection pressure exerted on HIV by CTL targeting identical epitopes but restricted by distinct HLA alleles from the same HLA supertype. J. Immunol. 177, 4699–4708 (2006).

    CAS  PubMed  Google Scholar 

  99. Payne, R.P. et al. Differential escape patterns within the dominant HLA-B*57:03-restricted HIV Gag epitope reflect distinct clade-specific functional constraints. J. Virol. 88, 4668–4678 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Brumme, Z.L. et al. Human leukocyte antigen-specific polymorphisms in HIV-1 Gag and their association with viral load in chronic untreated infection. AIDS 22, 1277–1286 (2008).

    CAS  PubMed  Google Scholar 

  101. Brumme, Z.L. et al. Marked epitope- and allele-specific differences in rates of mutation in human immunodeficiency type 1 (HIV-1) Gag, Pol, and Nef cytotoxic T-lymphocyte epitopes in acute/early HIV-1 infection. J. Virol. 82, 9216–9227 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Marsh, S.G.E. et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75, 291–455 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).

    PubMed  PubMed Central  Google Scholar 

  104. Carlson, J.M. et al. Phylogenetic dependency networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag. PLoS Comput. Biol. 4, e1000225 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Carlson, J., Kadie, C., Mallal, S.A. & Heckerman, D. Leveraging hierarchical population structure in discrete association studies. PLoS One 2, e591 (2007).

    PubMed  PubMed Central  Google Scholar 

  106. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Google Scholar 

  107. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series B. Stat. Methodol. 39, 1–38 (1977).

    Google Scholar 

  108. Holmes, I. & Rubin, G.M. An expectation maximization algorithm for training hidden substitution models. J. Mol. Biol. 317, 753–764 (2002).

    CAS  PubMed  Google Scholar 

  109. Andrew, G. & Gao, J. Scalable training of L1-regularized log-linear models. in Proc. 24th International Conference on Machine Learning 33–40 (ACM, 2007).

Download references

Acknowledgements

We thank M. Carrington for comments on the manuscript, S. Riddler (University of Pittsburgh, Pittsburgh, Pennsylvania, USA) for access to HLA and sequence data from the ACTG trials, D. Claiborne (Emory University, Atlanta, Georgia, USA) for providing MJ4 proviruses with nonadapted and adapted epitopes, R.A. Kaslow and J. Tang (University of Alabama, Birmingham, Alabama, USA) for access to Zambian HLA data, and D. Goedhals and C. van Vuuren (University of Free State, Bloemfontein, South Africa) for curating additional clinical data from the Bloemfontein cohort. We thank Merck, the NIH National Institute of Allergy and Infectious Diseases (NIAID) and the NIAID-funded HIV Vaccine Trials Network for providing the clinical data set, viral sequences, HLA types and CTL response data from the Step Study (HVTN 502). We also thank the Step and ACTG 5142 and 5128 staff and trial participants, as well as the staff and volunteers of the HOMER, WAHCS, ZEHRP, Durban, Gaborone, Kimberley and Bloemfontain cohorts, for their contributions. This study was funded by NIAID (grants R01 AI112566 (P.A.G.), R56 AI098551 (P.A.G.), R01 AI64060 (E.H.), R37 AI51231 (E.H.), P01 AI074415 (T.M.A.), U01 AI 66454 (R.S.), RO1 AI46995 (P.J.R.G.) and R01 AI071906 (R.A. Kaslow and J. Tang)), the Canadian Institutes of Health Research (grants MOP-93536 and HOP-115700 (both to M.A.B. and Z.L.B.)) and the Wellcome Trust (grant WT104748MA (P.J.R.G.)). HLA typing and viral sequencing of the ACTG cohorts were supported by the NIH (grant U01 AI 068636 to R.H.), the National Institute of Mental Health (NIMH) and the National Institute of Dental and Craniofacial Research (NIDCR). Support for the ZEHRP cohort was also provided by the International AIDS Vaccine Initiative (S.A.) and made possible in part by the support of the American people through the US Agency for International Development (USAID). A full list of IAVI donors is available at http://www.iavi.org. This work was also supported in part by the Virology Core at the Emory Center for AIDS Research (grant P30 AI050409 (E.H.)), the Flow Cytometry Core at the University of Alabama at Birmingham Center for AIDS Research (grant P30 AI027767 (P.A.G.)), the Tennessee Center for AIDS Research (P30 AI110527 (S.M.)) and the Yerkes National Primate Research Center base (grant P51OD11132 (E.H.)) through the NIH Office of the Director. M.S. was supported in part by an Action Cycling Fellowship. T.N. was supported by the International AIDS Vaccine Initiative, the South African Department of Science and Technology and the National Research Foundation through the South Africa Research Chairs Initiative, by an International Early Career Scientist award from the Howard Hughes Medical Institute, and by the Victor Daitz Foundation. P.R.H. is supported by a CIHR/GSK Professorship in Clinical Virology. Z.L.B. is supported by a Scholar Award from the Michael Smith Foundation for Health Research.

Author information

Authors and Affiliations

Authors

Contributions

J.M.C. designed and implemented the statistical analyses and adaptation model and wrote the paper. N.P. designed and implemented the adaptation model, with help from V.Y.F.T., A.K., C.E.D. and D.H. N.F. and C.J.B. helped with the design and/or implementation of the statistical analyses. P.A.G. designed the functional studies on primary immune responses, which were performed by V.Y.D., A.B. and J.S. K.P. and T.M.A. provided controller sequences. M.S., S.A. and E.H. provided transmission pair and longitudinal sequence and clinical data. M.A.B., J.G., M.A.P., W.K., R.H., M.J., S.M., R.S., J.F., P.R.H., T.N., S.A., P.J.R.G., Z.L.B. and E.H. provided chronic infection data. J.M.C., E.H., P.A.G., Z.L.B. and P.J.R.G. advised the project and helped write the paper, with input from all other authors.

Corresponding authors

Correspondence to Jonathan M Carlson, Eric Hunter or Paul A Goepfert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–4 and Supplementary Notes 1–3 (PDF 5342 kb)

Supplementary Data Set

Adaptation scores, escape associations, and functional data for all cohorts. (XLSX 1813 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, J., Du, V., Pfeifer, N. et al. Impact of pre-adapted HIV transmission. Nat Med 22, 606–613 (2016). https://doi.org/10.1038/nm.4100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.4100

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology