Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determinants of HIV-1 broadly neutralizing antibody induction

Abstract

Broadly neutralizing antibodies (bnAbs) are a focal component of HIV-1 vaccine design, yet basic aspects of their induction remain poorly understood. Here we report on viral, host and disease factors that steer bnAb evolution using the results of a systematic survey in 4,484 HIV-1-infected individuals that identified 239 bnAb inducers. We show that three parameters that reflect the exposure to antigen—viral load, length of untreated infection and viral diversity—independently drive bnAb evolution. Notably, black participants showed significantly (P = 0.0086–0.038) higher rates of bnAb induction than white participants. Neutralization fingerprint analysis, which was used to delineate plasma specificity, identified strong virus subtype dependencies, with higher frequencies of CD4-binding-site bnAbs in infection with subtype B viruses (P = 0.02) and higher frequencies of V2-glycan-specific bnAbs in infection with non–subtype B viruses (P = 1 × 10−5). Thus, key host, disease and viral determinants, including subtype-specific envelope features that determine bnAb specificity, remain to be unraveled and harnessed for bnAb-based vaccine design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary 8-virus neutralization screen identifies 239 bnAb-inducing individuals.
Figure 2: Primary 8-virus screen detects broad and potent neutralization.
Figure 3: Influence of viral and disease parameters on the development of neutralization breadth.
Figure 4: Ethnicity influences the development of neutralization breadth.
Figure 5: Influence of HIV-1 subtype on the type of bnAb response.

Similar content being viewed by others

References

  1. Burton, D.R. & Mascola, J.R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16, 571–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Klein, F. et al. Antibodies in HIV-1 vaccine development and therapy. Science 341, 1199–1204 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mascola, J.R. & Haynes, B.F. HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol. Rev. 254, 225–244 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Moore, P.L., Williamson, C. & Morris, L. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends Microbiol. 23, 204–211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Caskey, M. et al. Viremia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487–491 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lynch, R.M. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7, 319ra206 (2015).

    PubMed  Google Scholar 

  7. Trkola, A. et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat. Med. 11, 615–622 (2005).

    CAS  PubMed  Google Scholar 

  8. Scheid, J.F. et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535, 556–560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Euler, Z. et al. Longitudinal analysis of early HIV-1-specific neutralizing activity in an elite neutralizer and in five patients who developed cross-reactive neutralizing activity. J. Virol. 86, 2045–2055 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Simek, M.D. et al. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83, 7337–7348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Burton, D.R. et al. A blueprint for HIV vaccine discovery. Cell Host Microbe 12, 396–407 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gray, E.S. et al. The neutralization breadth of HIV-1 develops incrementally over 4 years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol. 85, 4828–4840 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sather, D.N. et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 83, 757–769 (2009).

    CAS  PubMed  Google Scholar 

  14. Landais, E. et al. Broadly neutralizing antibody responses in a large longitudinal sub-Saharan HIV primary infection cohort. PLoS Pathog. 12, e1005369 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Klein, F. et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153, 126–138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwong, P.D. & Mascola, J.R. Human antibodies that neutralize HIV-1: identification, structures and B cell ontogenies. Immunity 37, 412–425 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Doria-Rose, N.A. et al. Breadth of human-immunodeficiency-virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables. J. Virol. 84, 1631–1636 (2010).

    CAS  PubMed  Google Scholar 

  18. Moore, P.L. et al. Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat. Med. 18, 1688–1692 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhiman, J.N. et al. Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nat. Med. 21, 1332–1336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Doria-Rose, N.A. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509, 55–62 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao, H.X. et al. Coevolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, X. et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wibmer, C.K. et al. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog. 9, e1003738 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Cortez, V. et al. The broad neutralizing antibody responses after HIV-1 superinfection are not dominated by antibodies directed to epitopes common in single infection. PLoS Pathog. 11, e1004973 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Luo, S. & Perelson, A.S. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising. Proc. Natl. Acad. Sci. USA 112, 11654–11659 (2015).

    CAS  PubMed  Google Scholar 

  26. Piantadosi, A. et al. Breadth of neutralizing antibody response to human immunodeficiency virus type 1 is affected by factors early in infection but does not influence disease progression. J. Virol. 83, 10269–10274 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Derdeyn, C.A., Moore, P.L. & Morris, L. Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr. Opin. HIV AIDS 9, 210–216 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Locci, M. et al. Human circulating PD-1+CXCR3CXCR5+ memory TFH cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758–769 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schoeni–Affolter, F. et al. Cohort profile: the Swiss HIV Cohort study. Int. J. Epidemiol. 39, 1179–1189 (2010).

    PubMed  Google Scholar 

  30. Rieder, P. et al. Characterization of human immunodeficiency virus type 1 (HIV-1) diversity and tropism in 145 patients with primary HIV-1 infection. Clin. Infect. Dis. 53, 1271–1279 (2011).

    CAS  PubMed  Google Scholar 

  31. Mellors, J.W. et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann. Intern. Med. 126, 946–954 (1997).

    CAS  PubMed  Google Scholar 

  32. Recher, M. et al. Deliberate removal of T cell help improves virus-neutralizing antibody production. Nat. Immunol. 5, 934–942 (2004).

    CAS  PubMed  Google Scholar 

  33. Kelsoe, G., Verkoczy, L. & Haynes, B.F. immune system regulation in the induction of broadly neutralizing HIV-1 antibodies. Vaccines (Basel) 2, 1–14 (2014).

    Google Scholar 

  34. Kouyos, R.D. et al. Ambiguous nucleotide calls from population-based sequencing of HIV-1 are a marker for viral diversity and the age of infection. Clin. Infect. Dis. 52, 532–539 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shankarappa, R. et al. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J. Virol. 73, 10489–10502 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kouyos, R.D. et al. Molecular epidemiology reveals long-term changes in HIV type 1 subtype B transmission in Switzerland. J. Infect. Dis. 201, 1488–1497 (2010).

    PubMed  Google Scholar 

  37. von Wyl, V. et al. The role of migration and domestic transmission in the spread of HIV-1 non-B subtypes in Switzerland. J. Infect. Dis. 204, 1095–1103 (2011).

    PubMed  Google Scholar 

  38. Montefiori, D.C. et al. Demographic factors that influence the neutralizing antibody response in recipients of recombinant HIV-1 gp120 vaccines. J. Infect. Dis. 190, 1962–1969 (2004).

    CAS  PubMed  Google Scholar 

  39. Chuang, G.Y. et al. Residue-level prediction of HIV-1 antibody epitopes based on neutralization of diverse viral strains. J. Virol. 87, 10047–10058 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Georgiev, I.S. et al. Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization. Science 340, 751–756 (2013).

    CAS  PubMed  Google Scholar 

  41. Goo, L., Chohan, V., Nduati, R. & Overbaugh, J. Early development of broadly neutralizing antibodies in HIV-1-infected infants. Nat. Med. 20, 655–658 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ward, A.B. & Wilson, I.A. Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends Biochem. Sci. 40, 101–107 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, W.L. et al. Assessing the paradox between transmitted and acquired HIV type 1 drug resistance mutations in the Swiss HIV Cohort Study from 1998 to 2012. J. Infect. Dis. 212, 28–38 (2015).

    PubMed  Google Scholar 

  44. Rieder, P. et al. HIV-1 transmission after cessation of early antiretroviral therapy among men having sex with men. AIDS 24, 1177–1183 (2010).

    PubMed  Google Scholar 

  45. Ragonnet-Cronin, M. et al. Genetic diversity as a marker for timing infection in HIV-infected patients: evaluation of a 6-month window and comparison with BED. J. Infect. Dis. 206, 756–764 (2012).

    PubMed  Google Scholar 

  46. Andersson, E. et al. Evaluation of sequence ambiguities of the HIV-1 pol gene as a method to identify recent HIV-1 infection in transmitted drug resistance surveys. Infect. Genet. Evol. 18, 125–131 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Taffé, P. & May, M. A joint back-calculation model for the imputation of the date of HIV infection in a prevalent cohort. Stat. Med. 27, 4835–4853 (2008).

    PubMed  Google Scholar 

  48. Castro, K.G. et al. 1993 Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR 41, RR-17 (CDC, 1992).

  49. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    CAS  PubMed  Google Scholar 

  50. Yoon, H. et al. CATNAP: a tool to compile, analyze and tally neutralizing antibody panels. Nucleic Acids Res. 43, W213–W219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rusert, P. et al. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. J. Exp. Med. 208, 1419–1433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Walker, L.M. et al. A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1-infected individuals. PLoS Pathog. 6, e1001028 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Mikell, I. et al. Characteristics of the earliest cross-neutralizing antibody response to HIV-1. PLoS Pathog. 7, e1001251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Binley, J.M. et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J. Virol. 82, 11651–11668 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhillon, A.K. et al. Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1–infected donors. J. Virol. 81, 6548–6562 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hraber, P. et al. Impact of clade, geography and age of the epidemic on HIV-1 neutralization by antibodies. J. Virol. 88, 12623–12643 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Hraber, P. et al. Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28, 163–169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Campbell, M.J. & Swinscow, T.D.V. Statistics at Square One (Wiley-Blackwell/BMJ Books, 2009).

  59. Rand, W.M. Objective criteria for evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971).

    Google Scholar 

Download references

Acknowledgements

We thank the patients participating in the ZPHI and the SHCS and their physicians and study nurses for patient care; B. Remy, F. Schoeni-Affolter and Y. Vallet from the SHCS Data Center in Lausanne for data management; M. Robbiani, D. Perraudin and M. Minichiello for administrative assistance. We thank D. Burton (the Scripps Research Institute), J. Mascola (US National Institutes of Health (NIH) Vaccine Research Center), M. Nussenzweig (Rockefeller University), M. Connors (NIH), D. Katinger (Polymun), P. Moore and L. Morris (Center for Communicable Diseases, South Africa) for providing antibodies and/or antibody expression plasmids for this study, either directly or via the NIH AIDS Research and Reference Reagent Program. Financial support for this study was provided by the Swiss National Science Foundation (grant 310030_152663 to A.T.), the Clinical Priority Research Priority Program of the University of Zurich (viral infectious diseases: Zurich Primary HIV Infection Study to H.F.G. and A.T.), the Yvonne-Jacob Foundation (to H.F.G.) the Swiss Vaccine Research Institute (to A.T., H.F.G., R.D.K., R.R.R. and J.F.) and a SystemsX.ch grant (AntibodyX to A.T. and R.R.R.). R.D.K. was supported by the Swiss National Science Foundation (PZ00P3-142411 and BSSGI0_155851). This study was cofunded within the framework of the Swiss HIV Cohort Study, supported by the Swiss National Science Foundation (grant 33CS30_148522 to H.F.G.), the small nested SHCS project 744 (to A.T.) and the SHCS research foundation. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

P.R., R.D.K., H.F.G. and A.T. conceived and designed the study and analyzed data. P.R., H.E., M.S., M. Huber, C.W.T. and J.F. designed and performed experiments and analyzed data. J.W., T.U., V.C., H.K., S.Y., V.A., T.K. and J.B. conducted experiments and analyzed data. C.K., A.S., C.M., N.H. and R.R.R. conducted computational analyses and contributed analysis tools and data analysis. D.L.B., M.C., E.B., M. Hoffmann, A.C., M.B., A.R., H.F.G. and the members of the Swiss HIV Cohort Study conceived and managed the SHCS and ZPHI cohorts collected and contributed patient samples and clinical data. P.R., R.D.K., M.S., C.K., M. Huber, H.F.G. and A.T. wrote the manuscript, which all coauthors commented on.

Corresponding authors

Correspondence to Huldrych F Günthard or Alexandra Trkola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusert, P., Kouyos, R., Kadelka, C. et al. Determinants of HIV-1 broadly neutralizing antibody induction. Nat Med 22, 1260–1267 (2016). https://doi.org/10.1038/nm.4187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.4187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing