Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS

Abstract

The precise role played by HIV-specific cytotoxic T lymphocytes (CTL) in HIV infection remains controversial. Despite strong CTL responses being generated during the asymptomatic phase, the virus persists and AIDS ultimately develops. It has been argued that the virus is so variable, and the virus turnover so great that escape from CTL recognition would occur continually, but so far there is limited evidence for CTL escape. The opposing argument is that evidence for CTL escape is present but hard to find because multiple anti-HIV immune responses are acting simultaneously during the asymptomatic phase of infection. We describe six donors who make a strong CTL response to an immunodominant HLA-B27-restricted epitope. In the two donors who progressed to AIDS, CTL escape to fixation by the same mutation was observed, but only after 9–12 years of epitope stability. CTL escape may play an important role in the pathogenesis of HIV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koup, R.A. et al. Temporal association of Cellular immune responses with the initial control of viremia in primary HIV-1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Borrow, P., Lewicki, H., Hahn, B.E., Shaw, G.M. & Oldstone, M.B. Virus-specific CD8+ CTL activity associated with control of viremia in primary HIV-1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pantaleo, G. et al. Major expansion of CD8+ T Cells with a predominant Vβ usage during the primary immune response to HIV. Nature 370, 463–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Carmichael, A., Jin, X., Sissons, P. & Boryziewicz, L. Quantitative analysis of tHIV-1-specific cytotoxic T lymphocyte response at different stages of HIV-1 infection: Differential CTL responses to HIV-1 and EBV in late disease. J. Exp. Med. 177, 249–256 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Rinaldo, C. et al. High levels of anti-HIV-1 memory cytotoxic T lymphocyte activity and low viral load are associated with lack of disease in HIV-1 infected long-term nonprogressors. J. Virol. 69, 5838–5842 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein, M.R. et al. Kinetics of gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: A longitudinal analysis of rapid progressors and long-term asymptomatics. J. Exp. Med. 181, 1365–1372 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Moss, P.A.H. et al. Persistent high frequency of HIV-specific cytotoxic T Cells in peripheral blood of infected donors. Proc. Natl. Acad. Sci. USA. 92, 5773–5777 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Phillips, R.E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T Cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Nowak, M.A. et al. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375, 606–611 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Couillin, I. et al. Impaired CTL recognition due to genetic variations in the main immunogenic region of the HIV-1 Nef protein. J. Exp. Med. 180, 1129–1134 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Koenig, S. et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection of mutant HIV variants and subsequent disease progression. Nature Med. 1, 330–336 (1995).

    CAS  Google Scholar 

  12. Meyerhans, A. et al. In vivo persistence of an HIV-1-encoded HLA-B27-restricted cytotoxic T lymphocyte epitope despite specific in vitro reactivity, Eur. J. Immunol. 21, 2637–2640 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Harrer, T. et al. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. J. Immunol. 156, 2616–2623 (1996).

    CAS  PubMed  Google Scholar 

  14. Nietfeld, W. et al. Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. J. Immunol. 154, 2188–2197 (1995).

    CAS  Google Scholar 

  15. Bevan, M. & Braciale, T.J. Why can't cytotoxic T Cells handle HIV? Proc. Natl. Acad. Sci. USA. 92 5765–5767 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nixon, D.F. et al. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336, 484–487 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Klenerman, P. et al. Cytotoxic T-Cell activity antagonised by naturally occurring HIV-1 Gag variants. Nature 369, 403–407 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Madden, D.R., Gorga, J.C., Strominger, J.L. & Wiley, D.C. The three dimensional structure of HLA-B27 at 2. 1 Å resolution suggests a general mechanism for tight binding to MHC. Cell 70, 1035–1048 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Jardetzky, T.S., Lane, W.S., Robinson, R.A., Madden, D.R. & Wiley, D.C. Identification of self peptides bound to purified HLA-B27. Nature 353, 326–329 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Rotzschke, O. et al. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics 39, 74–77 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Rammansee, H.-G., Friede, T. & Stevanovic, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).

    Article  Google Scholar 

  22. Goulder, P.J.R., Edwards, A., Phillips, R.E. & McMichael, A.J. Identification of a novel HLA-B*2705-restricted cytotoxic T lymphocyte epitope within a conserved region of HIV-1 Nef. AIDS (in the press).

  23. Colbert, R.A., Rowland-Jones, S.L., McMichael, A.J. & Frelinger, J.A. Differences in peptide presentation between B27 subtypes: The importance of the P1 side chain in maintaining high affinity peptide binding to B*2703. Immunity 1, 121–130 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Cerundolo, V. et al. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur. J. Immunol. 21, 2069–2075 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Gotch, F. Recognition of influenza virus proteins by human cytotoxic T lymphocytes. thesis, Univ. Oxford (1987).

    Google Scholar 

  26. Nixon, D.F. Cytotoxic T Cell immunity in HIV infection. thesis, Univ. Oxford (1990).

    Google Scholar 

  27. Myers, G. et al. Human Retroviruses and AIDS 1995. (Los Alamos National Laboratory, Los Alamos, NM, (1995).

    Book  Google Scholar 

  28. Wei, X. et al. Virus dynamics in HIV-1 infection. Nature 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Ho, D.D. et al. rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Levy, J.A., Mackiewicz, C.E. & Barker, E. Controlling HIV pathogenesis: The role of noncytotoxic anti-HIV response of CD8+ T Cells. Immunol. Today 17, 217–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Cocchi, F. et al. Identification of RANTES, MlP-lα, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T Cells. Science 270, 1811–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Momany, C. et al. Crystal structure of dimeric HIV-1 capsid protein. Nature Struct. Biol. 3, 763–770 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Kaslow, R.A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. McNeill, A.J. et al. Association of HLA types A1-B8-DR3 and B27 with rapid and slow progression of HIV disease. Q. J. Med. 89, 177–185 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulder, P., Phillips, R., Colbert, R. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3, 212–217 (1997). https://doi.org/10.1038/nm0297-212

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm0297-212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing