Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antigen persistence and time of T-cell tolerization determine the efficacy of tolerization protocols for prevention of skin graft rejection

Abstract

We studied antigen-specific T-cell tolerization therapy using skin transplantation across a defined minor histocompatibility antigen difference. Specific tolerization protocols using short-lived peptide or long-lived spleen cells presenting the peptide as antigen prevented graft rejection without immunosuppression when started before or as long as 10 days after transplantation. Peptide-induced T-cell tolerance was transient, and antigen presentation by the graft was not sufficient to maintain tolerance. In contrast, transfer of antigen-expressing lymphoid cells induced long-lasting tolerance correlating with donor cell chimerism. These findings show that antigen-specific tolerization can induce graft acceptance even when begun after transplantation and that long-term graft survival depends on persistence of the tolerizing antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous and virus-triggered rejection of H8 skin grafts.
Figure 2: Rejection of H8 skin grafts by virus-immune mice and mice transgenic for (an LCMV gp33-specific) T-cell receptor.
Figure 3: Peptide-specific T-cell tolerization can prevent skin graft rejection.
Figure 4: Lymphoid donor cell chimerism maintains skin graft tolerance.

Similar content being viewed by others

References

  1. Billingham, R., Brent, L. & Medawar, P. Actively acquired tolerance of foreign cells. Nature 172, 603–606 ( 1953).

    CAS  PubMed  Google Scholar 

  2. Miller, R. & Phillips, R. Reduction of the in vitro cytotoxic lymphocyte response produced by in vivo exposure to semiallogeneic cells: recruitment or active suppression. J. Immunol. 117, 1913 (1976).

    CAS  PubMed  Google Scholar 

  3. Rammensee, H., Fink, P. & Bevan, M. Functional clonal deletion of class I specific cytotoxic T lymphocytes by veto cells that express antigen. J. Immunol. 133, 2390 (1984).

    CAS  PubMed  Google Scholar 

  4. Madsen, J., Superina, R., Wood, K. & Morris, P. Induction of immunological unresponsiveness using cells transfected with donor MHC genes. Nature 332, 161–164 ( 1988).

    CAS  PubMed  Google Scholar 

  5. van Rood, J. & Claas, F. The influence of allogeneic cells on the human T and B cell repertoire. Science 248, 1388–1393 (1990).

    CAS  PubMed  Google Scholar 

  6. Rajewsky, K. & Brenig, C. Tolerance to serum albumin in T and B lymphocytes in mice. Dose dependence, specificity and kinetics of escape. Eur. J. Immunol. 4, 120– 125 (1974).

    CAS  PubMed  Google Scholar 

  7. Mitchison, N. Induction of immunological paralysis in two zones of dosage. R. Soc. Proc. Series B 161, 275–292 (1964).

    CAS  Google Scholar 

  8. Dresser, D. Specific inhibition of antibody production:II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology 5, 378–388 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Romball, C. & Weigle, W. In vivo induction of tolerance in murine CD4+ cell subsets. J. Exp. Med. 178, 1637–1644 (1993).

    CAS  PubMed  Google Scholar 

  10. Ria, F., Chan, B., Scherer, M., Smith, J. & Gefter, M. Immunological activity of covalently linked T-cell epitopes. Nature 343, 381–383 (1990).

    CAS  PubMed  Google Scholar 

  11. Mamalaki, C., Tanaka, Y., Corbella, P., Chandler, P., Simpson, E. & Kioussis, D. T cell deletion follows chronic antigen specific T cell activation in vivo. Int. Immunol. 5, 1285– 1292 (1993).

    CAS  PubMed  Google Scholar 

  12. Kearney, E., Pape, K., Loh, D. & Jenkins, M. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    CAS  PubMed  Google Scholar 

  13. Kyburz, D., Aichele, P., Speiser, D., Hengartner, H., Zinkernagel, R.M. & Pircher, H. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur. J. Immunol. 23, 1956–1962 (1993).

    CAS  PubMed  Google Scholar 

  14. Aichele, P., Brduscha-Riem, K., Zinkernagel, R.M., Hengartner, H. & Pircher, H. T cell priming versus T cell tolerance induced by synthetic peptides. J. Exp. Med. 182, 261–266 (1995).

    CAS  PubMed  Google Scholar 

  15. Aichele, P. et al. Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity 6, 519–529 (1997).

    CAS  PubMed  Google Scholar 

  16. Gaur, A., Wiers, B., Liu, A., Rothbard, J. & Fathman, C. Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. Science 258, 1491–1494 (1992).

    CAS  PubMed  Google Scholar 

  17. Fuchs, E. & Matzinger, P. B cells turn off virgin, but not memory T cells. Science 258, 1156– 1159 (1992).

    CAS  PubMed  Google Scholar 

  18. Smilek, D., Wraith, D., Hodgkinson, S., Dwivedy, S., Steinman, L. & McDevitt, H. A single amino acid exchange in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 88, 9633–9637 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Starzl, T., Demetris, A., Murase, N., Ilstad, S., Ricordi, C. & Trucco, M. Cell migration, chimerism and graft acceptance. Lancet 339, 1579–1582 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Starzl, T. et al. The lost chord: microchimerism and allograft survival. Immunol. Today 17, 577–584 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood, K. & Sachs, D. Chimerism and transplantation tolerance: cause and effect. Immunol. Today 17, 584 –587 (1996).

    CAS  PubMed  Google Scholar 

  22. Cobbold, S., Martin, G., Quin, S. & Waldman, H. Monoclonal antibodies to promote marrow engraftment and tissue tolerance. Nature 323, 164–167 (1986).

    CAS  PubMed  Google Scholar 

  23. Ilstad, S. & Sachs, D. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168 (1984).

    Google Scholar 

  24. Maeda, T. et al. Role of peripheral hemopoetic chimerism in achieving donor-specific tolerance in adult mice. J. Immunol. 150, 753–762 (1993).

    CAS  PubMed  Google Scholar 

  25. Morecki, S., Leshem, B., Eid, A. & Slavin, S. Alloantigen persistence in induction and maintenance of transplantation tolerance. J. Exp. Med. 165, 1468–1480 ( 1987).

    CAS  PubMed  Google Scholar 

  26. Lubaroff, D. & Silvers, W. The importance of chimerism in maintaining tolerance of skin allografts. J Immunol. 111, 65–76 (1973).

    CAS  PubMed  Google Scholar 

  27. Ehl, S. et al. Viral and bacterial infections interfere with peripheral tolerance and activate CD8+ T cells to cause immunopathology. J. Exp. Med. 187, 763–774 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Moshkophidis, D., Assmann-Wischer, U., Simon, M. & Lehmann-Grube, F. The immune response of the mouse to lymphocytic choriomeningitis virus. V. High numbers of cytolytic T lymphocytes are generated in the spleen during acute infection. Eur. J. Immunol. 17, 937 –942 (1987).

    Google Scholar 

  29. Ehl, S., Klenerman, P., Aichele, P., Hengartner, H. & Zinkernagel, R.M. A functional and kinetic comparison of anitviral effector and memory cytotoxic T lymphocyte populations in vivo and in vitro. Eur. J. Immunol. 27, 3404– 3413 (1997).

    CAS  PubMed  Google Scholar 

  30. Kündig, T. et al. On the role of antigen in maintaining cytotoxic T-cell memory. Proc. Natl. Acad. Sci. 93, 9716– 9723 (1996).

    PubMed  PubMed Central  Google Scholar 

  31. Bachmann, M., Kündig, T., Hengartner, H. & Zinkernagel, R.M. Protection against immunopathological consequences of a viral infection by activated but not resting cytotoxic T cells: T cell memory without "memory T cells"? Proc. Natl. Acad. Sci. USA 94, 640–645 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mackay, C. T-cell memory: the connection between function, phenotype and migration pathways. Immunol. Today 12, 189– 192 (1991).

    CAS  PubMed  Google Scholar 

  33. Antoniou, A. et al. T cell tolerance and activation to a transgenic tumor antigen. Eur. J. Immunol. 26, 1094– 1102 (1996).

    CAS  PubMed  Google Scholar 

  34. Lafferty, K., Prowse, S. & Simeonovic, C. Immunobiology of tissue transplantation: A return to the passenger leukocyte concept. Annu. Rev. Immunol. 1, 143–173 (1983).

    CAS  PubMed  Google Scholar 

  35. Talmadge, D., Dart, G., Radovich, J. & Lafferty, K. Activation of transplant immunity: Effect of donor leukocytes on thyroid allograft rejection. Science 191, 385–388 (1976).

    Google Scholar 

  36. Zinkernagel, R.M. et al. Antigen localization regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev. 156, 199–209 (1997).

    CAS  PubMed  Google Scholar 

  37. Ohashi, P. et al. Ablation of "tolerance" and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65 , 305–317 (1991).

    CAS  PubMed  Google Scholar 

  38. Oldstone, M., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response. Cell 65, 319– 331 (1991).

    CAS  PubMed  Google Scholar 

  39. Ohashi, P. et al. Induction of diabetes is influenced by the infectious virus and local expression of MHC class I and Tumor necrosis factor-a. J. Immunol. 150, 5185–5194 (1993).

    CAS  PubMed  Google Scholar 

  40. Quin, S., Cobbold, S., Banjamin, R. & Waldmann, H. Induction of classical transplantation tolerance in the adult. J. Exp. Med. 169, 779–794 (1989).

    Google Scholar 

  41. Garcia-Morales, R. et al. The effects of chimeric cells following donor bone marrow infusions as detected by PCR-flow assays in kidney transplant recipients. J. Clin. Invest. 99, 1118– 1129 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barber, H. et al. Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation 51, 70– 75 (1991).

    CAS  PubMed  Google Scholar 

  43. Rao, A. et al. Augmentation of chimerism with perioperative donor bone marrow infusion in organ transplant recipients: a 44 month follow-up. Transplant Proc. 29, 1184–1185 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pircher, H., Bürki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559 (1989).

    CAS  PubMed  Google Scholar 

  45. Zinkernagel, R.M. et al. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. J. Exp. Med. 164, 1075–1092 (1986).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephan Ehl or Peter Aichele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehl, S., Aichele, P., Ramseier, H. et al. Antigen persistence and time of T-cell tolerization determine the efficacy of tolerization protocols for prevention of skin graft rejection. Nat Med 4, 1015–1019 (1998). https://doi.org/10.1038/2001

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/2001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing