Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Influenza: old and new threats

Abstract

Influenza remains an important disease in humans and animals. In contrast to measles, smallpox and poliomyelitis, influenza is caused by viruses that undergo continuous antigenic change and that possess an animal reservoir. Thus, new epidemics and pandemics are likely to occur in the future, and eradication of the disease will be difficult to achieve. Although it is not clear whether a new pandemic is imminent, it would be prudent to take into account the lessons we have learned from studying different human and animal influenza viruses. Specifically, reconstruction of the genes of the 1918 pandemic virus and studies on their contribution to virulence will be important steps toward understanding the biological capabilities of this lethal virus. Increasing the availability of new antiviral drugs and developing superior vaccines will provide us with better approaches to control influenza and to have a positive impact on disease load. A concern is that the imposition of new rules for working with infectious influenza viruses under high security and high containment conditions will stifle scientific progress. The complex questions of what makes an influenza virus transmissible from one human to another and from one species to another, as well as how the immune system interacts with the virus, will require the active collaboration and unencumbered work of many scientific groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrograph of influenza A virus particles.
Figure 2: Influenza A viruses circulating in the human population.
Figure 3: Life expectancy from 1900 to 2001 showing the impact of the 1918 influenza pandemic.
Figure 4: Inhibition of influenza virus replication cycle by antivirals.
Figure 5: Use of reverse genetics to generate influenza vaccine strains.

Similar content being viewed by others

References

  1. Hayden, F. & Palese, P. Influenza Virus. in Clinical Virology (ed. Richman, D.D.) 891–920 (Churchill Livingstone, New York, 1997).

    Google Scholar 

  2. Basler, C. & Palese, P. Influenza Viruses. in Encyclopedia of Molecular Medicine (ed. Creighton, T.) 1741–1747 (John Wiley and Sons, New York, 2002).

    Google Scholar 

  3. Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Neumann, G. et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl. Acad. Sci. USA 96, 8804–8806 (1999).

    Article  Google Scholar 

  5. Taubenberger, J.K., Reid, A.H., Janczewski, T.A. & Fanning, T.G. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1829–1839 (2001).

    Article  CAS  Google Scholar 

  6. Kawaoka, Y., Krauss, S. & Webster, R.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63, 4603–4608 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lipatov, A.S. et al. Influenza: emergence and control. J. Virol. 78, 8951–8959 (2004).

    Article  CAS  Google Scholar 

  8. Nakajima, K., Desselberger, U. & Palese, P. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274, 334–339 (1978).

    Article  CAS  Google Scholar 

  9. Klenk, H.D. & Rott, R. The molecular biology of influenza virus pathogenicity. Adv. Virus Res. 34, 247–281 (1988).

    Article  CAS  Google Scholar 

  10. Tumpey, T.M. et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 101, 3166–3171 (2004).

    Article  CAS  Google Scholar 

  11. Kash, J.C. et al. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J. Virol. 78, 9499–9511 (2004).

    Article  CAS  Google Scholar 

  12. Kobasa, D. et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431, 703–707 (2004).

    Article  CAS  Google Scholar 

  13. Basler, C.F. et al. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc. Natl. Acad. Sci. USA 98, 2746–2751 (2001).

    Article  CAS  Google Scholar 

  14. Geiss, G.K. et al. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 99, 10736–10741 (2002).

    Article  CAS  Google Scholar 

  15. Seo, S.H., Hoffmann, E. & Webster, R.G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med. 8, 950–954 (2002).

    Article  CAS  Google Scholar 

  16. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza viruses. Science 293, 1773–1775 (2001).

    Article  Google Scholar 

  17. Dowdle, W.R. Influenza A virus recycling revisited. Bull. World Health Organ. 77, 820–826 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zamarin, D. & Palese, P. Influenza virus: Lessons learned. in International Kilmer Conference (eds Kowalski, J.B. & Morissey, J.B.) (Polyscience Publications, Station St. Martin, Laval, Quebec, Canada, in the press).

  19. Katz, J.M. The impact of avian influenza viruses on public health. Avian Dis. 47, 914–920 (2003).

    Article  CAS  Google Scholar 

  20. Li, K.S. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213 (2004).

    Article  CAS  Google Scholar 

  21. Webby, R.J. & Webster, R.G. Are we ready for pandemic influenza? Science 302, 1519–1521 (2003).

    Article  CAS  Google Scholar 

  22. Hatta, M. & Kawaoka, Y. The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol. 10, 340–344 (2002).

    Article  CAS  Google Scholar 

  23. Shortridge, K.F. Pandemic influenza: a zoonosis? Semin. Respir. Infect. 7, 11–25 (1992).

    CAS  PubMed  Google Scholar 

  24. Profeta, M.L. & Palladino, G. Serological evidence of human infections with avian influenza viruses. Arch. Virol. 90, 355–360 (1986).

    Article  CAS  Google Scholar 

  25. Hay, A., Wolstenholme, A., Skehel, J. & Smith, M. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 4, 3021–3024 (1985).

    Article  CAS  Google Scholar 

  26. Monto, A.S. & Arden, N.H. Implications of viral resistance to amantadine in control of influenza A. Clin. Infect. Dis. 15, 362–367 (1992).

    Article  CAS  Google Scholar 

  27. Palese, P. & Compans, R.W. Inhibition of influenza virus replication in tissue culture by 2-deoxy- 2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J. Gen. Virol., 33 159–163 (1976).

    Article  CAS  Google Scholar 

  28. Mendel, D.B. et al. Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection. Antimicrob. Agents Chemother. 42, 640–646 (1998).

    Article  CAS  Google Scholar 

  29. Colman, P.M. A novel approach to antiviral therapy for influenza. Antimicrob. Agents Chemother. 44, 17–22 (1999).

    Article  CAS  Google Scholar 

  30. Kiso, M. et al. Resistant influenza A viruses in children treated with oseltamivir. A descriptive study. Lancet 364, 759–765 (2004).

    Article  CAS  Google Scholar 

  31. Carr, J. et al. Influenza virus carrying neuraminidase with reduced sensitivity to oseltamivir carboxylate has altered properties in vitro and is compromised for infectivity and replicative ability in vivo. Antiviral Res. 54, 79–88 (2002).

    Article  CAS  Google Scholar 

  32. Tumpey, T.M. et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 99, 13849–13854 (2002).

    Article  CAS  Google Scholar 

  33. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  Google Scholar 

  34. Tompkins, S.M., Lo, C-Y., Tumpey, T.M. & Epstein, S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA 101, 8682–8686 (2004).

    Article  CAS  Google Scholar 

  35. Kilbourne, E.D. et al. Related studies of a recombinant influenza virus vaccine. I. Derivation and characterization of virus and vaccine. J. Infect. Dis. 124, 449–462 (1971).

    Article  CAS  Google Scholar 

  36. Hoffmann, E., Neumann, G., Hobom, G., Webster, R.G. & Kawaoka, Y. “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267, 310–317 (2000).

    Article  CAS  Google Scholar 

  37. Talon, J. et al. Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proc. Natl. Acad. Sci. USA 97, 4309–4314 (2000).

    Article  CAS  Google Scholar 

  38. Kemble, G. & Greenberg, H. Novel generations of influenza vaccines. Vaccine 21, 1789–1795 (2003).

    Article  Google Scholar 

  39. Palese, P. & Garcia-Sastre, A. Influenza vaccines: present and future. J. Clin. Invest. 110, 9–13 (2002).

    Article  CAS  Google Scholar 

  40. Swayne, D.E. et al. Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease. Avian Dis. 47, 1047–1050 (2003).

    Article  CAS  Google Scholar 

  41. Taubenberger, J.K. & Palese, P. The origin and virulence of the 1918 “Spanish” influenza virus. in Contemporary Topics in Influenza Virology (ed. Kawaoka, Y.) (Horizon Scientific Press, Wymondham, Norfolk, UK, in the press).

  42. Glezen, W.P. Emerging infections: pandemic influenza. Epidemiol. Rev. 18, 64–76 (1996).

    Article  CAS  Google Scholar 

  43. Reid, A.H., Taubenberger, J.K. & Fanning, T.G. The 1918 Spanish influenza: integrating history and biology. Microbes Infect. 3, 81–87 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Palese.

Ethics declarations

Competing interests

Peter Palese is a consultant for Avimex Greenhills and Medimmune, as well as a co-author of patents and patent applications owned by Mount Sinai School of Medicine in the field of viral vaccines and antiviral drugs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palese, P. Influenza: old and new threats. Nat Med 10 (Suppl 12), S82–S87 (2004). https://doi.org/10.1038/nm1141

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing