Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses

Abstract

Mosquito-borne flaviviruses provide some of the most important examples of emerging and resurging diseases of global significance. Here, we describe three of them: the resurgence of dengue in tropical and subtropical areas of the world, and the spread and establishment of Japanese encephalitis and West Nile viruses in new habitats and environments. These three examples also illustrate the complexity of the various factors that contribute to their emergence, resurgence and spread. Whereas some of these factors are natural, such as bird migration, most are due to human activities, such as changes in land use, water impoundments and transportation, which result in changed epidemiological patterns. The three examples also show the ease with which mosquito-borne viruses can spread to and colonize new areas, and the need for continued international surveillance and improved public health infrastructure to meet future emerging disease threats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The global distribution and spread of the major Japanese encephalitis serological group members.
Figure 2: Approximate geographic distribution of WNV in the Americas, from 1999 to September 2004.
Figure 3: Dengue virus.
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Morse, S.S. Factors in the emergence of infectious diseases. Emerg. Infect. Dis. 1, 7–15 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heinz, F.X. et al. Family Flaviviridae, in Virus Taxonomy. 7th Report of the International Committee on Taxonomy of Viruses (eds. van Regenmortel, M.H. et al.) 859–878 (Academic, San Diego, 2000).

    Google Scholar 

  3. Lindenbach, B.D. & Rice, C.M. Flaviviridae: The viruses and their replication, in Fields Virology 4th edn (eds. Knipe, D.M. & Howley, P.M.) 991–1042 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  4. Westaway, E.G. & Blok, J. Taxonomy and evolutionary relationships of flaviviruses, in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J. & Kuno, G.) 147–173 (CAB International, London, 1997).

    Google Scholar 

  5. Marin, M.S., Zanotto, P.M., Gritsun, T.S. & Gould, E.A. Phylogeny of TYU, SRE, and CFA virus: different evolutionary rates in the genus Flavivirus. Virology 206, 1133–1139 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Zanotto, P.M., Gould, E.A., Gao, G.F., Harvey, P.H. & Holmes, E.C. Population dynamics of flaviviruses revealed by molecular phylogenetics. Proc. Natl. Acad. Sci. USA 93, 548–553 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Kuno, G., Chang, G.J., Tsuchiya, K.R., Karabatsos, N. & Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol. 72, 73–83 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Billoir, F. et al. Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J. Gen. Virol. 81, 781–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gaunt, M.W. et al. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 82, 1867–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Gould, E.A., de Lamballerie, X., Zanotto, P.M.A. & Holmes, E.C. Evolution, epidemiology, and dispersal of flaviviruses revealed by molecular phylogenies. Adv. Virus Res. 57, 71–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Gould, E.A., de Lamballerie, X., Zanotto, P.M.A & Holmes, E.C. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv. Virus Res. 59, 277–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Gould, E.A., Moss, S.R. & Turner, S.L. Evolution and dispersal of encephalitic flavivruses. Arch. Virol. Suppl. 18, 65–84 (2004).

  13. Gould, E.A. Evolution of Japanese encephalitis serocomplex viruses. Curr. Top. Microbiol. Immunol. 267, 391–404 (2002).

    CAS  PubMed  Google Scholar 

  14. Gritsun, T.S., Lashkevich, V.A. & Gould, E.A. Tick-borne encephalitis. Antiviral Res. 57, 129–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Porterfield, J.S. The basis of arbovirus classification. Med. Biol. 53, 400–405 (1975).

    CAS  PubMed  Google Scholar 

  16. Calisher, C.A. et al. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 70, 37–43 (1989).

    Article  PubMed  Google Scholar 

  17. Gubler, D.J. Dengue and dengue haemorrhagic fever: its history and resurgence as a global public health problem, in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J. & Kuno, G.) 1–22 (CAB International, London, 1997).

    Google Scholar 

  18. Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 33, 330–342 (2002).

    Article  PubMed  Google Scholar 

  19. Institute of Medicine. Emerging Infections: Microbial Threats to Health in the United States (eds. Lederberg, J., Shope, R.E. & Oaks, S.C.) (National Academy Press, Washington DC, 1992).

  20. Institute of Medicine. Microbial Threats to Health in the United States: Emergence, Detection and Response (eds. Smolinski, M.S., Hamburg, M.S. & Lederberg, J.) (National Academy Press, Washington DC, 2003).

  21. Mackenzie, J.S., Barrett, A.D.T. & Deubel, V. The Japanese encephalitis serological group of Flaviviruses: a brief introduction to the group. Curr. Top. Microbio. Immunol. 267, 1–10 (2002).

    CAS  Google Scholar 

  22. Solomon, T. & Vaughn, D.W. Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr. Top. Microbiol. Immunol. 267, 171–194 (2002).

    CAS  PubMed  Google Scholar 

  23. Burke, D.S. & Leake, C.J. Japanese encephalitis, in The Arboviruses: Epidemiology and Ecology Vol. 3 (ed. Monath, T.P.) 63–92 (CRC, Boca Raton, Florida, 1988).

    Google Scholar 

  24. Solomon, T. & Winter, P.M. Neurovirulence and host factors in flavivirus encephalitis—evidence from clinical epidemiology. Arch. Virol. Suppl. 18, 161–170 (2004).

  25. Solomon, T. et al. Poliomyelitis-like illness due to Japanese encephalitis virus. Lancet 351, 1094–1097 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Scherer, W.F. Ecological studies of Japanese encephalitis in Japan. Parts I–IX. Am. J. Trop. Med. Hyg. 8, 644–722 (1959).

    Article  CAS  PubMed  Google Scholar 

  27. Buescher, E.L. & Scherer, W.F. Ecological studies of Japanese encephalitis virus in Japan. IX. Epidemiologic correlations and conclusions. Am. J. Trop. Med. Hyg. 8, 719–722 (1959).

    Article  CAS  PubMed  Google Scholar 

  28. Innis, B.L. Japanese encephalitis, in Exotic Viral Infections (ed. Porterfield, J.S.) 147–173 (Chapman & Hall, London, 1995).

    Google Scholar 

  29. Endy, T.P. & Nislak, A. Japanese encephalitis virus: ecology and epidemiology. Curr. Top. Microbiol. Immunol. 267, 11–48 (2002).

    CAS  PubMed  Google Scholar 

  30. Vaughn, D.W. & Hoke, C.H. The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiol. Rev. 14, 197–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Umenai, T., Krzysko, R., Bektimerov, T.A. & Assaad, F.A. Japanese encephalitis current worldwide status. Bull. WHO 63, 625–631 (1985).

    CAS  PubMed  Google Scholar 

  32. Igarashi, A. et al. Detection of West Nile and Japanese encephalitis viral genome sequences in cerebrospinal fluid from acute encephalitis cases in Karachi, Pakistan. Microbiol. Immunol. 38, 827–830 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Prasad, S.R. et al. An epidemic of encephalitis in Haryana: serologic evidence of Japanese encephalitis in a few patients. Indian J. Pediatr. 30, 905–910 (1993).

    CAS  Google Scholar 

  34. Dhanda, V. et al. Virus isolation from wild-caught mosquitoes during an encephalitis outbreak in Kerala in 1996. Indian J. Med. Res. 106, 4–6 (1997).

    CAS  PubMed  Google Scholar 

  35. Hanna, J.N. et al. An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995. Med. J. Aust. 165, 256–260 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ritchie, S.A. et al. Isolation of Japanese encephalitis from Culex annulirostris in Australia. Am. J. Trop. Med. Hyg. 56, 80–84 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Mackenzie, J.S. et al. Emergence of Japanese encephalitis virus in the Australasian region, in Factors in the Emergence of Arbovirus Diseases (eds. Saluzzo, J.F. & Dodet, B.) 191–201 (Elsevier, Paris, 1997).

    Google Scholar 

  38. Hanna, J.N. et al. Japanese encephalitis in north Queensland, 1998. Med. J. Aust. 170, 533–536 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Kanamitsu, M. et al. Geographic distribution of arbovirus antibodies in indigenous human populations of the Indo-Australian archipelago. Am. J. Trop. Med. Hyg. 28, 351–363 (1979).

    Article  CAS  PubMed  Google Scholar 

  40. Marshall, I.D. Murray Valley and Kunjin encephalitis, in The Arboviruses: Epidemiology and Ecology Vol. 3 (ed. Monath, T.P.) 151–189 (CRC, Boca Raton, Florida, 1988).

    Google Scholar 

  41. Chen, W.R., Tesh, R.B. & Rico-Hesse, R. Genetic variation of Japanese encephalitis virus in nature. J. Gen. Virol. 71, 2915–2922 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, W.R., Rico-Hesse, R. & Tesh, R.B. A new genotype of Japanese encephalitis virus from Indonesia. Am. J. Trop. Med. Hyg. 47, 61–69 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Ni, H. & Barrett, A.D.T. Nucleotide and deduced amino acid sequence of the structural protein genes of Japanese encephalitis viruses from different geographic locations. J. Gen. Virol. 76, 401–407 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Paranjpe, S. & Banerjee, K. Phylogenetic analysis of the envelope gene of Japanese encephalitis virus. Virus Res. 42, 107–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Williams, D.T., Wang, L.-F., Daniels, P.W. & Mackenzie, J.S. Molecular characterization of the first Australian isolate of Japanese encephalitis virus, the FU strain. J. Gen. Virol. 81, 2471–2480 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Uchil, P.D. & Satchidanandam, V. Phylogenetic analysis of Japanese encephalitis virus: envelope gene based analysis reveals a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent. Am. J. Trop. Med. Hyg. 65, 242–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Tsuchie, H. et al. Genotypes of Japanese encephalitis virus isolated in three states in Malaysia. Am. J. Trop. Med. Hyg. 56, 153–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Pyke, A.T. et al. The appearance of a second genotype of Japanese encephalitis virus isolated in the Australasian region. Am. J. Trop. Med. Hyg. 65, 747–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ma, S.-P. et al. Short report: a major genotype of Japanese encephalitis virus currently circulating in Japan. Am. J. Trop. Med. Hyg. 69, 151–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Nga, P.T. et al. Shift in Japanese encephalitis virus (JEV) genotype circulating in northern Vietnam: implications for frequent introductions of JEV from Southeast Asia to East Asia. J. Gen. Virol. 85, 1625–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, D.K. et al. Molecular characterisation of full-length genome of Japanese encephalitis virus (KV1899) isolated from pigs in Korea. J. Vet. Sci. 5, 197–205 (2004).

    Article  PubMed  Google Scholar 

  52. Twiddy, S.S. & Holmes, E.C. The extent of homologous recombination in members of the genus Flavivirus. J. Gen. Virol. 84, 429–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Yun, S.-I. et al. Molecular characterization of the full-length genome of the Japanese encephalitis virus strain K87P39. Virus Res. 96, 129–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Tsai, T.F. Factors in the changing epidemiology of Japanese encephalitis and West Nile fever. in Factors in the Emergence of Arbovirus Diseases (eds. Saluzzo, J.F. & Dodet, B.) 179–189 (Elsevier, Paris, 1997).

    Google Scholar 

  55. Mackenzie, J.S. et al. Japanese encephalitis as an emerging virus: the emergence and spread of Japanese encephalitis virus in Australasia. Curr. Top. Microbiol. Immunol. 267, 49–73 (2002).

    CAS  PubMed  Google Scholar 

  56. Ritchie, S.A. & Rochester, W. Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg. Infect. Dis. 7, 900–903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mackenzie, J.S., Lindsay, M.D. & Daniels, P.W. The effect of climate on the incidence of vector-borne viral diseases: the potential value of seasonal forecasting, in Applications of Seasonal Climate Forecasting in Agriculture and Natural Ecosystems—The Australian Experience (eds. Hammer, G., Nicholls, N. & Mitchell, C.) 429–452 (Kluwer Academic Publishers, The Netherlands, 2000).

    Chapter  Google Scholar 

  58. Min, J.-G. & Mei, X. Progress in studies on the overwintering of the mosquito Culex tritaeniorhynchus. Southeast Asian J. Trop. Med. Publ. Hlth. 27, 810–817 (1996).

    CAS  Google Scholar 

  59. Ming, J.-G. et al. Autumn southward 'return' migration of the mosquito Culex tritaeniorhynchus in China. Med. Vet. Entomol. 7, 323–327 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Asahina, S. & Noguchi, K. Long distance flight of Culex tritaeniorynchus. Jpn. J. Sanit. Zool. 19, 110–112 (1968).

    Google Scholar 

  61. Innis, B.L. Japanese encephalitis, in Exotic Viral Infections (ed. Porterfield, J.S.) 147–174 (Chapman & Hall, London, 1995).

  62. Solomon, T. et al. Origin and evolution of Japanese encephalitis virus in Southeast Asia. J. Virol. 77, 3091–3098 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Monath, T.P. Japanese encephalitis vaccines: current vaccines and future prospects. Curr. Top. Microbiol. Immunol. 267, 105–138 (2002).

    CAS  PubMed  Google Scholar 

  64. Chang, G.J., Kuno, G., Purdy, D.E. & Davis, B.S. Recent advancement in flavivirus vaccine development. Expert Rev. Vaccines 3, 199–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Bistra, M.B. et al. Efficacy of a single-dose SA14–14–2 vaccine against Japanese encephalitis: a case control study. Lancet 358, 791–795 (2001).

    Article  Google Scholar 

  66. Monath, T.P. et al. Clinical proof of principle for ChimeriVax: recombinant live, attenuated vaccines against flavivirus infections. Vaccine 20, 1004–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Beasley, D.W.C. et al. Protection against Japanese encephalitis virus strains representing four genotypes by passive transfer of sera raised against ChimeriVax-JE experimental vaccine. Vaccine 22, 3722–3726 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Smithburn, K.C., Hughes, T.P., Burke, A.W. & Paul, J.H. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. 20, 471–492 (1940).

    Article  Google Scholar 

  69. Petersen, L.R. & Roehrig, J.T. West Nile virus: a reemerging global pathogen. Emerg. Infect. Dis. 7, 611–614 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murgue, B., Zeller, H. & Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe and Asia. Curr. Top. Microbiol. Immunol. 267, 196–221 (2002).

    Google Scholar 

  71. Hall, R.A., Broom, A.K., Smith, D.W. & Mackenzie, J.S. The ecology and epidemiology of Kunjin virus. Curr. Top. Microbiol. Immunol. 267, 253–269 (2002).

    CAS  PubMed  Google Scholar 

  72. Jia, X.Y. et al. Genetic analysis of the West Nile New York 1999 encephalitis virus. Lancet 354, 1971–1972 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Lanciotti, R.S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern US. Science 286, 2333–2337 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Lanciotti, R.S. et al. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298, 96–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Berthet, F.X. et al. Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J. Gen. Virol. 78, 2293–2297 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Scherret, J.H., Mackenzie, J.S., Hall, R.A., Deubel, V. & Gould, E.A. Phylogeny and molecular epidemiology of West Nile and Kunjin viruses. Curr. Top. Microbiol. Immunol. 267, 373–390 (2002).

    CAS  PubMed  Google Scholar 

  77. Burt, F.J. et al. Phylogenetic relationships of southern African West Nile virus isolates. Emerg. Infect. Dis. 8, 820–826 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lvov, D.K. et al. West Nile virus and other zoonotic viruses in Russia: examples of emerging and reemerging situations. Arch. Virol. Suppl. 18, 85–96 (2004).

  79. Charrel, R.N. et al. Evolutionary relationship between Old World West Nile virus strains. Evidence for viral gene flow between Africa, the Middle East, and Europe. Virology 315, 381–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Beasley, D.W. et al. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296, 17–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Komar, N. et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg. Infect. Dis. 9, 311–322 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Malkinson, M. & Banet, C. The role of birds in the ecology of West Nile virus in Europe and Africa. Curr. Top. Microbiol. Immunol. 267, 309–322 (2002).

    CAS  PubMed  Google Scholar 

  83. McLean, R.G., Ubico, S.R., Bourne, D. & Komar, N. West Nile virus in livestock and wildlife. Curr. Top. Microbiol. Immunol. 267, 272–308 (2002).

    Google Scholar 

  84. Rappole, J.H. et al. Migratory birds and West Nile virus. J. Appl. Microbiol. 94, 47S–58S (2003).

    Article  PubMed  Google Scholar 

  85. Solomon, T. Flavivirus encephalitis. N. Engl. J. Med. 351, 370–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Hubalek, Z. & Halouzka, J. West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 5, 643–650 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lillibridge, K.M. et al. The 2002 introduction of West Nile virus into Harris County, Texas, an area historically endemic for St. Louis encephalitis. Am. J. Trop. Med. Hyg. 70, 676–681 (2004).

    Article  PubMed  Google Scholar 

  88. Iwamoto, M. et al. Transmission of West Nile virus from an organ donor to four transplant recipients. N. Engl. J. Med. 348, 2196–2203 (2003).

    Article  PubMed  Google Scholar 

  89. Pealer, L.N. et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N. Engl. J. Med. 349, 1236–1245 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Intrauterine West Nile virus infection—New York, 2002. MMWR Morb. Mortal. Wkly. Rep. 51, 1135–1136 (2002).

  91. Possible West Nile virus transmission to an infant through breast-feeding—Michigan, 2002. MMWR Morb. Mortal. Wkly. Rep. 51, 877–878 (2002).

  92. West Nile virus infection among turkey breeder farm workers—Wisconsin, 2002. MMWR Morb. Mortal. Wkly. Rep. 52, 1017–1019 (2003).

  93. Possible dialysis-related West Nile virus transmission—Georgia, 2003. MMWR Morb. Mortal. Wkly. Rep, 53, 738–739 (2004).

  94. Petersen, L.R. & Marfin, A.A. West Nile virus: a primer for the clinician. Ann. Intern. Med. 137, 173–179 (2002).

    Article  PubMed  Google Scholar 

  95. Watson, J.T. et al. Clinical characteristics and functional outcomes of West Nile fever. Ann. Intern. Med. 141, 360–365 (2004).

    Article  PubMed  Google Scholar 

  96. Sejvar, J.J. et al. Neurologic manifestations and outcome of West Nile virus infection. J. Am. Med. Assoc. 290, 511–515 (2003).

    Article  Google Scholar 

  97. O'Leary, D.R. et al. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 4, 61–70 (2004).

    Article  PubMed  Google Scholar 

  98. Sejvar, J.J. et al. Acute flaccid paralysis and West Nile virus infection. Emerg. Infect. Dis. 9, 788–793 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Guarner, J. et al. Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum. Pathol. 35, 983–990 (2004).

    Article  PubMed  Google Scholar 

  100. Southam, C.M. & Moore, A.E. Induced virus infections in man by the Egypt isolates of West Nile virus. Am. J. Trop. Med. Hyg. 3, 19–50 (1954).

    Article  CAS  PubMed  Google Scholar 

  101. Kleinschmidt-DeMasters, B.K. et al. Naturally acquired West Nile virus encephalomyelitis in transplant recipients: clinical, laboratory, diagnostic, and neuropathological features. Arch. Neurol. 61, 1210–1220 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Perelygin, A.A. et al. Positional cloning of the murine flavivirus resistance gene. Proc. Natl. Acad. Sci. USA 99, 9322–9327 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Diamond, M.S. et al. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578–2586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, T. et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J. Immunol. 171, 2524–2531 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Shrestha, B. & Diamond, M.S. Role of CD8+ T cells in control of West Nile virus infection. J. Virol. 78, 8312–8321 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gea-Banacloche, J. et al. West Nile virus: pathogenesis and therapeutic options. Ann. Intern. Med. 140, 545–553 (2004).

    Article  PubMed  Google Scholar 

  107. Solomon, T. et al. Interferon α-2a in Japanese encephalitis: a randomised double-blind placebo-controlled trial. Lancet 361, 821–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Granwehr, B.P. et al. West Nile virus: where are we now? Lancet Infect. Dis. 4, 547–556 (2004).

    Article  PubMed  Google Scholar 

  109. Kimura, R. & Hotta, S. On the inoculation of dengue virus into mice. (In Japanese). Nippon Igaku 3379, 629–633 (1944).

    Google Scholar 

  110. Sabin, A.B. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1, 30–50 (1952).

    Article  CAS  PubMed  Google Scholar 

  111. Hammon, W.M. et al. New hemorrhagic fevers of children in the Philippines and Thailand. Trans. Assoc. Am. Physicians 73, 140–155 (1960).

    CAS  PubMed  Google Scholar 

  112. Twiddy, S.S., Holmes, E.C. & Rambaut, A. Inferring the rate and time-scale of dengue virus evolution. Mol. Biol. Evol. 20, 122–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Holmes, E.C. & Twiddy, S.S. The origin, emergence and evolutionary genetics of dengue virus. Inf. Genetics Evol. 3, 19–28 (2003).

    Article  Google Scholar 

  114. Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174, 479–493 (1990).

    Article  CAS  PubMed  Google Scholar 

  115. Lewis, J.A. et al. Phylogenetic relationships of dengue-2 viruses. Virology 197, 216–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Rosen, L. The emperor's new clothes revisited, a reflection on the pathogenesis of dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 26, 337–343 (1997).

    Article  Google Scholar 

  117. Gubler, D.J., Reed, D., Rosen, L. & Hitchcock, J.D., Jr. Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am. J. Trop. Med. Hyg. 27, 581–589 (1978).

    Article  CAS  PubMed  Google Scholar 

  118. Lanciotti, R.S., Lewis, J.G., Gubler, D.J. & Trent, D.W. Molecular evolution and epidemiology of dengue-3 viruses. J. Gen. Virol. 75, 65–75 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Rico-Hesse, R. et al. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230, 244–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Leitmeyer, K.C. et al. Dengue virus structural differences that correlate with pathogenesis. J. Virol. 73, 4738–4747 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Messer, W.B. et al. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg. Infect. Dis. 9, 800–809 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gubler, D.J. et al. Virological surveillance for dengue haemorrhagic fever in Indonesia using the mosquito inoculation technique. Bull. WHO 57, 931–936 (1979).

    CAS  PubMed  Google Scholar 

  123. Bennett, S.N. et al. Selection-driven evolution of emergent dengue virus. Mol. Biol. Evol. 10, 1650–1658 (2003).

    Article  CAS  Google Scholar 

  124. Holmes, E.C., Worobey, M. & Rambaut, A. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 16, 405–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Tolou, H. et al. Evidence for recombination in natural populations of dengue virus type 1 based on the analysis of complete genome sequences. J. Gen. Virol. 82, 1283–1290 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Uzcategui, N.Y. et al. The molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution and recombination. J. Gen. Virol. 82, 2945–2953 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Holmes, E.C. & Burch, S.S. The causes and consequences of genetic variation in dengue virus. Trends Microbiol. 8, 74–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480–496 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. World Health Organization. Dengue Haemorrhagic Fever, Diagnosis, Treatment, Prevention and Control Edn. 2 (World Health Organization, Geneva, 1997).

  131. Kurane, I. & Ennis, F.A. Immunopathogenesis of dengue virus infections, in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J. & Kuno, G.) 273–290 (CAB International, London, 1997)

    Google Scholar 

  132. Innis, B.L. Dengue and dengue hemorrhagic fever, in Exotic Viral Infections (ed. Porterfield, J.S.) 103–145 (Chapman & Hall, London, 1995).

    Google Scholar 

  133. Kuno, G. Serodiagnosis of flaviviral infections and vaccinations in humans. Adv. Virus Res. 61, 3–65 (2004).

    Article  Google Scholar 

  134. Halstead, S.B., Rojanasuphot, S. & Sangkawibha, N. Original antigenic sin in dengue. Am. J. Trop. Med. Hyg. 32, 154–156 (1983).

    Article  CAS  PubMed  Google Scholar 

  135. Guzman, M.G. & Kouri, G. Dengue diagnosis, advances and challenges. Int. J. Infect. Dis. 8, 69–80 (2004).

    Article  PubMed  Google Scholar 

  136. Halstead, S.B. The XXth century dengue pandemic: need for surveillance and research. Rapp. Trimest. Stat. Sanit. Mond. 45, 292–298 (1992).

    CAS  Google Scholar 

  137. Gubler, D.J. & Clark, G.G. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg. Infect. Dis. 1, 55–57 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. World Health Organization. Strengthening implementation of the global strategy for dengue fever/dengue haemorrhagic fever prevention and control. Report of the Informal Consultation, 18–20 October 1999 (World Health Organization, Geneva, 2000).

  139. Gubler, D.J. Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Am. J. Trop. Med. Hyg. 40, 571–578 (1989).

    Article  CAS  PubMed  Google Scholar 

  140. Kinney, R.M. & Huang, C.Y.H. Development of new vaccines against dengue fever and Japanese encephalitis. Intervirology 44, 176–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Halstead, S.B. & Deen, J. The future of dengue vaccines. Lancet 360, 1243–1245 (2002).

    Article  PubMed  Google Scholar 

  142. Bhamarapravati, N. & Yoksan, S. Live attenuated tetravalent dengue vaccine. Vaccine 18 Suppl. 2, 44–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Sun, W. et al. Vaccination of human volunteers with monovalent and tetravalent live-attenuated dengue vaccine candidates. Am. J. Trop. Med. Hyg. 69 Suppl. 6, 24–31 (2003).

    Article  PubMed  Google Scholar 

  144. Whitehead, S.S. et al. A live attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3′untranslated region is highly attenuated and immunogenetic in monkeys. J. Virol. 77, 1653–1657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guirakhoo, F. et al. Construction, safety and immunogenicity in nonhuman primates of a chimeric yellow fever–dengue virus tetravalent vaccine. J. Virol. 75, 7290–7304 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huang, C.Y.H. et al. Chimeric dengue type 2 (vaccine strain PDK-53)/Dengue type 1 virus as a potential candidate Dengue type 1 virus vaccine. J. Virol. 74, 3020–3028 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Whitehead, S.S. et al. Substitution of the structural genes of dengue virus type 4 with those of type 2 results in chimeric vaccine candidates which are attenuated for mosquitoes, mice and rhesus monkeys. Vaccine 21, 4307–4316 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Konishi, E., Yamaoka, M., Kurane, I. & Mason, P.W. A DNA vaccine expressing dengue type 2 premembrane and envelope genes induces neutralizing antibody and memory B cells in mice. Vaccine 18, 1133–1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Men, R. et al. Immunization of rhesus monkeys with a recombinant of modified vaccine virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine 18, 3113–3122 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Accelerating the Development and Introduction of a Dengue Vaccine for Poor Children. Hosted by: Children's Hospital No. 1 and Pasteur Institute of Ho Chi Minh City, December 5–8, 2001 (Ho Chi Minh City, Vietnam, 2001).

  151. Lounibos, L.P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. van den Hurk, A.F. et al. Japanese encephalitis on Badu Island, Australia: the first isolation of Japanese encephalitis virus from Culex gelidus in the Australasian region and the role of mosquito host feeding patterns in virus transmission cycles. Trans. R. Soc. Trop. Med. Hyg. 95, 595–600 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Mackenzie, J.S. & Broom, A.K. Old river irrigation area: the effect of dam construction and irrigation on the incidence of Murray Valley encephalitis virus, in Water Resources—Health, Environment and Development (ed. Kay, B.H.) 108–122 (Spon, London, 1998).

    Google Scholar 

  154. Weissenbock, H. et al. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652–656 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Weissenbock, H. et al. Usutu virus activity in Austria, 2001–2002. Microbes Infect. 5, 1132–1136 (2003).

    Article  PubMed  Google Scholar 

  156. Buckley, A. et al. Serological evidence of West Nile virus, Usutu virus and Sindbis virus infection of birds in the UK. J. Gen. Virol. 84, 2807–2817 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Robertson, S.E. et al. Yellow fever. A decade of reemergence. J. Am. Med. Assoc. 276, 1157–1162 (1996).

    Article  CAS  Google Scholar 

  158. Sanders, E.J. et al. First recorded outbreak of yellow fever in Kenya, 1992–1993. I. Epidemiologic investigations. Am. J. Trop. Med. Hyg. 59, 644–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Monath, T.P. Yellow fever: an update. Lancet Infect. Dis. 1, 11–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Monath, T.P. Yellow fever, in The Arboviruses: Epidemiology and Ecology Vol. 5 (ed. Monath, T.P.) 139–231 (CRC Press, Boca Raton, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S Mackenzie.

Ethics declarations

Competing interests

John Mackenzie is on the Board of Directors of a diagnostics company, PANBIO, and holds about 10,000 shares worth approximately Aust. $3,000 (US $2,000).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackenzie, J., Gubler, D. & Petersen, L. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10 (Suppl 12), S98–S109 (2004). https://doi.org/10.1038/nm1144

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing