Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques

Abstract

Given the mucosal transmission of HIV-1, we compared whether a mucosal vaccine could induce mucosal cytotoxic T lymphocytes (CTLs) and protect rhesus macaques against mucosal infection with simian/human immunodeficiency virus (SHIV) more effectively than the same vaccine given subcutaneously. Here we show that mucosal CTLs specific for simian immunodeficiency virus can be induced by intrarectal immunization of macaques with a synthetic-peptide vaccine incorporating the LT(R192G) adjuvant. This response correlated with the level of T-helper response. After intrarectal challenge with pathogenic SHIV-Ku2, viral titers were eliminated more completely (to undetectable levels) both in blood and intestine, a major reservoir for virus replication, in intrarectally immunized animals than in subcutaneously immunized or control macaques. Moreover, CD4+ T cells were better preserved. Thus, induction of CTLs in the intestinal mucosa, a key site of virus replication, with a mucosal AIDS vaccine ameliorates infection by SHIV in non-human primates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic HIV/SIV vaccine constructs used for the immunizations, and scheme of immunization and challenge.
Figure 2: Induction of CTLs specific for SIV Gag CL10, Gag 372 or Pol 143, as indicated, in MLN, colonic lamina propria, PBMCs and ALN of group C macaques after 8 intrarectal immunizations with HIV/SIV peptide and LT(R192G).
Figure 3: Induction of CL10 SIV Gag-specific CTLs in ALN, MLN and PBMC and SIV Pol 143- and SIV Gag 372-specific CTLs in ALN of group B macaques after 8 s.c. immunizations with HIV/SIV peptide in Montanide ISA 51.
Figure 4: Helper T-cell response correlates with CTL response.
Figure 5: Intrarectal and s.c. immunization of macaques with HIV/SIV peptide vaccine differentially protect against intrarectal challenge with pathogenic SHIV-Ku2.
Figure 6: Intrarectal peptide vaccine was more effective than s.c. peptide vaccine at priming colonic CTLs for a secondary response induced by challenge infection with SHIV, and clearing virus from the gut.

Similar content being viewed by others

References

  1. Veazey, R.S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Belyakov, I.M. et al. Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc. Natl. Acad. Sci. USA 95, 1709–1714 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berzofsky, J.A. et al. Approaches to improve engineered vaccines for human immunodeficiency virus (HIV) and other viruses that cause chronic infections. Immunol. Rev. 170, 151–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lehner, T., Bergmeier, L., Wang, Y., Tao, L. & Mitchell, E. A rational basis for mucosal vaccination against HIV infection. Immunol. Rev. 170, 183–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Czerkinsky, C. et al. Mucosal immunity and tolerance: relavance to vaccine development. Immunol. Rev. 170, 197–222 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belyakov, I.M. et al. The importance of local mucosal HIV-specific CD8+ cytotoxic T lymphocytes for resistance to mucosal–viral transmission in mice and enhancement of resistance by local administration of IL-12. J. Clin. Invest. 102, 2072–2081 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belyakov, I.M., Ahlers, J.D., Clements, J.D., Strober, W. & Berzofsky, J.A. Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific cytotoxic T lymphocytes. J. Immunol. 165, 6454–6462 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Murphey-Corb, M. et al. Selective induction of protective MHC class I restricted CTL in the intestinal lamina propria of rhesus monkeys by transient SIV infection of the colonic mucosa. J. Immunol. 162, 540–549 (1999).

    CAS  PubMed  Google Scholar 

  9. Kaul, R. et al. HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J. Immunol. 164, 1602–1611 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Berzofsky, J.A. et al. Construction of peptides encompassing multideterminant clusters of HIV envelope to induce in vitro T-cell responses in mice and humans of multiple MHC types. J. Clin. Invest. 88, 876–884 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi, H. et al. An immunodominant epitope of the HIV gp160 envelope glycoprotein recognized by class I MHC molecule-restricted murine cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 85, 3105–3109 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahlers, J.D. et al. Construction of an HIV-1 peptide vaccine containing a multideterminant helper peptide linked to a V3 loop peptide 18 inducing strong neutralizing antibody responses in mice of multiple MHC haplotypes after two immunizations. J. Immunol. 150, 5647–5665 (1993).

    CAS  PubMed  Google Scholar 

  13. Ahlers, J.D. et al. Candidate HIV type 1 multideterminant cluster peptide-P18MN vaccine constructs elicit type 1 helper T cells, cytotoxic T cells, and neutralizing antibody, all using the same adjuvant immunization. AIDS Res. Hum. Retroviruses 12, 259–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Palker, T.J. et al. Polyvalent human immunodeficiency virus synthetic immunogen comprised of envelope gp120 T helper cell sites and B cell neutralization epitopes. J. Immunol. 142, 3612–3619 (1989).

    CAS  PubMed  Google Scholar 

  15. Hart, M.K. et al. Priming of anti-human immunodeficiency virus (HIV) CD8+ cytotoxic T cells in vivo by carrier-free HIV synthetic peptides. Proc. Natl. Acad. Sci. USA 88, 9448–9452 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Yasutomi, Y., Palker, T.J., Gardner, M.B., Haynes, B.F. & Letvin, N.L. Synthetic peptide in mineral oil adjuvant elicits simian immunodeficiency virus-specific CD8+ cytotoxic T lymphocytes in Rhesus monkeys. J. Immunol. 151, 5096–5105 (1993).

    CAS  PubMed  Google Scholar 

  17. Rose, J.R., Williams, M.B., Rott, L.S., Butcher, E.C. & Greenberg, H.B. Expression of the mucosal homing receptor α4β7 correlates with the ability of CD8+ memory T cells to clear rotavirus infection. J. Virol. 72, 726–730 (1998).

    CAS  PubMed  Google Scholar 

  18. Miller, M.D., Yamamoto, H., Hughes, A.L., Watkins, D.I. & Letvin, N.L. Definition of an epitope and MHC class I molecule recognized by gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. J. Immunol. 147, 320–329 (1991).

    CAS  PubMed  Google Scholar 

  19. Kuroda, M.J. et al. Analysis of Gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I-peptide complex. J. Exp. Med. 187, 1373–1381 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allen, T.M. et al. CD8+ lymphocytes from simian immunodeficiency virus-infected rhesus macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: implications for vaccine design and testing. J. Virol. 75, 738–749 (2000).

    Article  Google Scholar 

  21. Dickinson, B.L. & Clements, J.D. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immun. 63, 1617–1623 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morris, C.B., Cheng, E., Thanawastien, A., Cardenas-Freytag, L. & Clements, J.D. Effectiveness of intranasal immunization with HIV-gp160 Env CTL epitope peptide (E7) in combination with the mucosal adjuvant LT(R192G). Vaccine 18, 1944–1951 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Joag, S.V. et al. Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J. Virol. 70, 3189–3197 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Joag, S.V. et al. Chimeric SHIV that causes CD4+ T cell loss and AIDS in rhesus macaques. J. Med. Primatol. 27, 59–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Egan, M.A. et al. Use of major histocompatibility complex class I/peptide/β2M tetramers to quantitate CD8+ cytotoxic T lymphocytes specific for dominant and nondominant viral epitopes in simian-human immunodeficiency virus-infected rhesus monkeys. J. Virol. 73, 5466–5472 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brunner, E., Munzel, U. & Puri, M.L. Ranks-score tests in factorial designs with repeated measures. J. Multivariate Anal. 70, 286–317 (1999).

    Article  Google Scholar 

  27. Brunner, E. & Puri, M.L. Nonparametric methods in factorial designs. Statistical Papers 42, 1–52 (2001).

    Article  Google Scholar 

  28. Walker, B.D. et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328, 345–351 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Barouch, D.H. et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290, 486–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Cranage, M.P. et al. Intrarectal challenge of macaques vaccinated with formalin-inactivated simian immunodeficiency virus. Lancet 339, 273–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Amara, R.R. et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Belyakov, I.M. et al. Induction of mucosal CTL response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing HIV 89.6 envelope protein. J. Virol. 72, 8264–8272 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosenberg, E.S. et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278, 1447–1450 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Shirai, M. et al. Helper-CTL determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. J. Immunol. 152, 549–556 (1994).

    CAS  PubMed  Google Scholar 

  35. Ahlers, J.D., Takeshita, T., Pendleton, C.D. & Berzofsky, J.A. Enhanced immunogenicity of HIV-1 vaccine construct by modification of the native peptide sequence. Proc. Natl. Acad. Sci. USA 94, 10856–10861 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C.J. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Braun, M.C., He, J., Wu, C.-Y. & Kelsall, B.L. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor B1 and B2 chain expression. J. Exp. Med. 189, 541–552 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Allen, T.M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Knapp, L.A., Lehmann, E., Piekarczyk, M.S., Urvater, J.A. & Watkins, D.I. A high frequency of Mamu-A*01 in the rhesus macaque detected by polymerase chain reaction with sequence-specific primers and direct sequencing. Tissue Antigens 50, 657–661 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Bull, D.M. & Bookman, M.A. Isolation and functional characterization of human intestinal mucosal lymphoid cells. J. Clin. Invest. 59, 966–974 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hosmalin, A. et al. Priming with helper T-cell epitope peptides enhances the antibody response to the envelope glycoprotein of HIV 1 in primates. J. Immunol. 146, 1667–1673 (1991).

    CAS  PubMed  Google Scholar 

  42. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Kuroda, M.J. et al. Emergence of CTL coincides with clearance of virus during primary simian immunodeficiency virus infection in rhesus monkeys. J. Immunol. 162, 5127–5133 (1999).

    CAS  PubMed  Google Scholar 

  44. Romano, J.W. et al. Quantitative evaluation of simian immunodeficiency virus infection using NASBA technology. J. Virol. Methods 86, 61–70 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Spano and the animal care staff at the ABL for their assistance; R. Pal for the titered stock of SHIV-Ku2; J.-P. Planchot for the Montanide ISA51; M. Lewis for the DNA PCR of provirus; V. Stepanov, Y. Tuyrin, S. Steinberg, D. Venzon and E. Brunner for assistance, advice and critical comments on statistical analysis; V. Hirsch, B. Moss, and J. Snyder for critical reading of the manuscript and helpful suggestions; and N. Miller for support of the animals. The work of A.S. was partially supported by NIH contract N01-AI-95362 and grant R24 RR 15731.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor M. Belyakov or Jay A. Berzofsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, I., Hel, Z., Kelsall, B. et al. Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nat Med 7, 1320–1326 (2001). https://doi.org/10.1038/nm1201-1320

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1201-1320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing