Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer

Abstract

Immunodeficiency is a barrier to successful vaccination in individuals with cancer and chronic infection. We performed a randomized phase 1/2 study in lymphopenic individuals after high-dose chemotherapy and autologous hematopoietic stem cell transplantation for myeloma. Combination immunotherapy consisting of a single early post-transplant infusion of in vivo vaccine-primed and ex vivo costimulated autologous T cells followed by post-transplant booster immunizations improved the severe immunodeficiency associated with high-dose chemotherapy and led to the induction of clinically relevant immunity in adults within a month after transplantation. Immune assays showed accelerated restoration of CD4 T-cell numbers and function. Early T-cell infusions also resulted in significantly improved T-cell proliferation in response to antigens that were not contained in the vaccine, as assessed by responses to staphylococcal enterotoxin B and cytomegalovirus antigens (P < 0.05). In the setting of lymphopenia, combined vaccine therapy and adoptive T-cell transfer fosters the development of enhanced memory T-cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protocol design.
Figure 2: Time course and magnitude of total serum IgG antipneumococcal antibody responses.
Figure 3: Longitudinal assessment of CD4+ and CD8+ T-cell functional recovery after autologous transplantation and adoptive T-cell infusion.

Similar content being viewed by others

References

  1. Anderson, K.C. et al. T-cell-depleted autologous bone marrow transplantation therapy: analysis of immune deficiency and late complications. Blood 76, 235–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Guillaume, T., Rubinstein, D.B. & Symann, M. Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 92, 1471–1490 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Porrata, L.F. et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 98, 579–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Dhodapkar, M.V., Krasovsky, J. & Olson, K. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc. Natl Acad. Sci. USA 99, 13009–13013 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Noonan, K. et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res. 65, 2026–2034 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Li, L., Yee, C. & Beavo, J.A. CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 283, 848–851 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Boussiotis, V.A. et al. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nat. Med. 6, 290–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Levine, B.L. et al. Adoptive Transfer of Costimulated CD4+ T cells Induces Expansion of Peripheral T Cells and Decreased CCR5 Expression in HIV Infection. Nat. Med. 8, 47–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Laport, G.G. et al. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood 102, 2004–2013 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Rapoport, A.P. et al. Molecular remission of CML after autotransplantation followed by adoptive transfer of costimulated autologous T cells. Bone Marrow Transplant. 33, 53–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Black, S. et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 19, 187–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Gandhi, M.K. et al. Antibody responses to vaccinations given within the first two years after transplant are similar between autologous peripheral blood stem cell and bone marrow transplant recipients. Bone Marrow Transplant. 28, 775–781 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Guinan, E.C. et al. Polysaccharide conjugate vaccine responses in bone marrow transplant patients. Transplantation 57, 677–684 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Romero-Steiner, S. et al. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin. Infect. Dis. 29, 281–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Jokinen, J.T., Ahman, H., Kilpi, T.M., Makela, P.H. & Kayhty, M.H. Concentration of antipneumococcal antibodies as a serological correlate of protection: an application to acute otitis media. J. Infect. Dis. 190, 545–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Jodar, L. et al. Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 21, 3265–3272 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Powers, D.C., Anderson, E.L., Lottenbach, K. & Mink, C.M. Reactogenicity and immunogenicity of a protein-conjugated pneumococcal oligosaccharide vaccine in older adults. J. Infect. Dis. 173, 1014–1018 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Shelly, M.A. et al. Comparison of pneumococcal polysaccharide and CRM197-conjugated pneumococcal oligosaccharide vaccines in young and elderly adults. Infect. Immun. 65, 242–247 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lottenbach, K.R. et al. Age-associated differences in immunoglobulin G1 (IgG1) and IgG2 subclass antibodies to pneumococcal polysaccharides following vaccination. Infect. Immun. 67, 4935–4938 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shelly, M.A., Pichichero, M.E. & Treanor, J.J. Low baseline antibody level to diphtheria is associated with poor response to conjugated pneumococcal vaccine in adults. Scand. J. Infect. Dis. 33, 542–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kamboj, K.K., Kirchner, H.L., Kimmel, R., Greenspan, N.S. & Schreiber, J.R. Significant variation in serotype-specific immunogenicity of the seven-valent Streptococcus pneumoniae capsular polysaccharide-CRM197 conjugate vaccine occurs despite vigorous T cell help induced by the carrier protein. J. Infect. Dis. 187, 1629–1638 (2003).

    Article  PubMed  Google Scholar 

  22. Hakim, F.T. et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest. 115, 930–939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uchida, T., Pappenheimer, A.M. Jr & Greany, R. Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem. 248, 3838–3844 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Borrello, I. et al. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 95, 3011–3019 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Teshima, T. et al. Tumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation. Cancer Res. 61, 162–171 (2001).

    CAS  PubMed  Google Scholar 

  26. Overwijk, W.W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singhal, S. & Mehta, J. Reimmunization after blood or marrow stem cell transplantation. Bone Marrow Transplant. 23, 637–646 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Nordoy, T. et al. Humoral immunity to viral and bacterial antigens in lymphoma patients 4–10 years after high-dose therapy with ABMT. Serological responses to revaccinations according to EBMT guidelines. Bone Marrow Transplant. 28, 681–687 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Jones, R.J. et al. Induction of graft-versus-host disease after autologous bone marrow transplantation. Lancet 1, 754–757 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Vavassori, M. et al. Restricted TCR repertoire and long-term persistence of donor-derived antigen-experienced CD4+ T cells in allogeneic bone marrow transplantation recipients. J. Immunol. 157, 5739–5747 (1996).

    CAS  PubMed  Google Scholar 

  31. Kirschner, D. & Panetta, J.C. Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Eaton, S.M., Burns, E.M., Kusser, K., Randall, T.D. & Haynes, L. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J. Exp. Med. 200, 1613–1622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Molrine, D.C. et al. Donor immunization with pneumococcal conjugate vaccine and early protective antibody responses following allogeneic hematopoietic cell transplantation. Blood 101, 831–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Antin, J.H. et al. Protective antibody responses to pneumococcal conjugate vaccine after autologous hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 11, 213–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Dummer, W. et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 110, 185–192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Janssen, E.M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Heitger, A. et al. Defective T-helper cell function after T-cell-depleting therapy affecting naive and memory populations. Blood 99, 4053–4062 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Shinefield, H.R. et al. Safety and immunogenicity of heptavalent pneumococcal CRM197 conjugate vaccine in infants and toddlers. Pediatr. Infect. Dis. J. 18, 757–763 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Eskola, J. et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344, 403–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. de Aristegui, F.J. et al. Evaluation of the safety and immunogenicity of pneumococcal seven-valent conjugate vaccine (Prevenar) administered in previously unvaccinated Spanish children aged 24 to 36 months. Vaccine 23, 1917–1922 (2005).

    Article  CAS  Google Scholar 

  41. Ekstrom, N. et al. Kinetics and avidity of antibodies evoked by heptavalent pneumococcal conjugate vaccines PncCRM and PncOMPC in the Finnish Otitis Media Vaccine Trial. Infect. Immun. 73, 369–377 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Alexanian, R., Dimopoulos, M.A., Delasalle, K. & Barlogie, B. Primary dexamethasone treatment of multiple myeloma. Blood 80, 887–890 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Levine, B.L. et al. Effects of CD28 costimulation on long term proliferation of CD4+ T cells in the absence of exogenous feeder Cells. J. Immunol. 159, 5921–5930 (1997).

    CAS  PubMed  Google Scholar 

  44. Concepcion, N.F. & Frasch, C.E. Pneumococcal type 22f polysaccharide absorption improves the specificity of a pneumococcal-polysaccharide enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 8, 266–272 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wells, A.D., Gudmundsdottir, H. & Turka, L.A. Following the fate of individual T cells throughout activation and clonal expansion. Signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. J. Clin. Invest. 100, 3173–3183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Novak, E.J., Liu, A.W., Nepom, G.T. & Kwok, W.W. MHC class II tetramers identify peptide-specific human CD4(+) T cells proliferating in response to influenza A antigen. J. Clin. Invest. 104, R63–R67 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blade, J. et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br. J. Haematol. 102, 1115–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Vonderheide, R. Carroll and J Riley for advice and intellectual assistance; M. Pohl and T. Yates for assistance with clinical data management, K. Grandfield, L. Winestone, M. Shalwala and A. Cannon for technical assistance, and H. Standiford, J. Karp, L. Schuchter, D. Molrine and H. Hamilton for serving on the Data Safety and Monitoring Committee, C. Hass for administrative assistance. We received support from a Specialized Center of Research and Clinical Scholars Award supported by the Leukemia and Lymphoma Society of America, National Institute of Allergy and Infectious Diseases contract no. N01-AI-85342 US National Cancer Institute grant R21 CA101356-2 and a Fellows' Grant from the Multiple Myeloma Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron P Rapoport or Carl H June.

Ethics declarations

Competing interests

Carl June is the founder of Xcyte Therapies, Inc. He receives no personal financial compensation from Xcyte Therapies and does not own stock in Xcyte Therapies.

Bruce Levine is a consultant for Xcyte Therapies.

The clinical trial and studies presented in this manuscript were not in any part funded by Xcyte Therapies.

Supplementary information

Supplementary Fig. 1

Characteristics of the adoptively transferred cells. (PDF 23 kb)

Supplementary Fig. 2

Effect of early T-cell infusion on numeric T-cell recovery. (PDF 96 kb)

Supplementary Fig. 3

Kaplan-Meier plots of event-free survival and overall survival for all study patients (n = 53). (PDF 24 kb)

Supplementary Methods (PDF 45 kb)

Supplementary Note (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapoport, A., Stadtmauer, E., Aqui, N. et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 11, 1230–1237 (2005). https://doi.org/10.1038/nm1310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing