Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans

Abstract

In animals, effective immune responses against malignancies and against several infectious pathogens, including malaria, are mediated by T cells. Here we show that a heterologous prime-boost vaccination regime of DNA either intramuscularly or epidermally, followed by intradermal recombinant modified vaccinia virus Ankara (MVA), induces high frequencies of interferon (IFN)-γ-secreting, antigen-specific T-cell responses in humans to a pre-erythrocytic malaria antigen, thrombospondin-related adhesion protein (TRAP). These responses are five- to tenfold higher than the T-cell responses induced by the DNA vaccine or recombinant MVA vaccine alone, and produce partial protection manifest as delayed parasitemia after sporozoite challenge with a different strain of Plasmodium falciparum. Such heterologous prime-boost immunization approaches may provide a basis for preventative and therapeutic vaccination in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmid DNA vaccine encoding ME-TRAP.
Figure 2: ELISPOT responses to pools of peptides 7 d after various vaccination regimens.
Figure 3: Characteristics of induced T-cell responses and protective efficacy.

Similar content being viewed by others

References

  1. Harty, J.T., Tvinnereim, A.R. & White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18, 275–308 (2000).

    Article  CAS  Google Scholar 

  2. Kaech, S.M., Wherry, E.J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  Google Scholar 

  3. Parker, D.C. T cell-dependent B cell activation. Annu. Rev. Immunol. 11, 331–360 (1993).

    Article  CAS  Google Scholar 

  4. Doolan, D.L. & Hoffman S.L. The complexity of protective immunity against liver-stage malaria. J. Immunol. 165, 1453–1462 (2000).

    Article  CAS  Google Scholar 

  5. Guidotti, L.G. et al. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4, 25–36 (1996).

    Article  CAS  Google Scholar 

  6. Villinger, F. et al. Adoptive transfer of simian immunodeficiency virus (SIV) naive autologous CD4+ cells to macaques chronically infected with SIV is sufficient to induce long-term nonprogressor status. Blood 99, 590–599 (2002).

    Article  CAS  Google Scholar 

  7. Winter, H., Hu, H.M., Urba, W.J. & Fox, B.A. Tumor regression after adoptive transfer of effector T cells is independent of perforin or Fas ligand (APO-1L/CD95L). J. Immunol. 163, 4462–4472 (1999).

    CAS  PubMed  Google Scholar 

  8. Becker, C. et al. Adoptive tumor therapy with T lymphocytes enriched through an IFN-γ capture assay. Nat. Med. 7, 1159–1162 (2001)

    Article  CAS  Google Scholar 

  9. Seki, N. et al. Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J. Immunol. 168, 3484–3492 (2002).

    Article  CAS  Google Scholar 

  10. Zwaveling, S. et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 169, 350–358 (2002).

    Article  CAS  Google Scholar 

  11. Bertoletti, A. et al. HLA class I restricted human cytotoxic T cells recognise endogenously synthesised hepatitis B virus nucleocapsid antigen. Proc. Natl. Acad. Sci. USA 88, 10445–10449 (1991).

    Article  CAS  Google Scholar 

  12. Boni, C. et al. Lamivudine treatment can restore T cell responsiveness in chronic hepatitis B. J. Clin. Invest. 102, 968–975 (1998).

    Article  CAS  Google Scholar 

  13. Wang, R. et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282, 476–480 (1998).

    Article  CAS  Google Scholar 

  14. Wang, R. et al. Induction of CD4+ T cell-dependent CD8+ type 1 responses in humans by a malaria DNA vaccine. Proc. Natl. Acad. Sci. USA 98, 10817–10822 (2001).

    Article  CAS  Google Scholar 

  15. Roy, M.J. et al. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19, 764–778 (2000).

    Article  CAS  Google Scholar 

  16. Gupta, K. et al. Safety and immunogenicity of a high-titered canarypox vaccine in combination with rgp120 in a diverse population of HIV-1-uninfected adults: AIDS Vaccine Evaluation Group Protocol 022A. J. Acquir. Immune Defic. Syndr. 29, 254–261 (2002).

    Article  CAS  Google Scholar 

  17. Lalvani, A. et al. Potent induction of focused Th1-type cellular and humoral immune responses by RTS/S/SBAS2, a recombinant Plasmodium falciparum malaria vaccine. J. Infect. Dis. 180, 1656–1664 (1999).

    Article  CAS  Google Scholar 

  18. Schneider, J. et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4, 397–402 (1998).

    Article  CAS  Google Scholar 

  19. Hanke, T. et al. Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine 16, 439–445 (1998).

    Article  CAS  Google Scholar 

  20. McShane, H., Brookes, R., Gilbert, S.C. & Hill, A.V. Enhanced immunogenicity of CD4+ T-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect. Immun. 69, 681–686 (2001).

    Article  CAS  Google Scholar 

  21. Schneider, J. et al. Induction of CD8+ T cells using heterologous prime-boost immunisation strategies. Immunol. Rev. 170, 29–38 (1999).

    Article  CAS  Google Scholar 

  22. Gilbert, S.C. et al. Enhanced CD8 T cell immunogenicity and protective efficacy in a mouse malaria model using a recombinant adenoviral vaccine in heterologous prime-boost immunisation regimes. Vaccine 20, 1039–1045 (2002).

    Article  CAS  Google Scholar 

  23. Gilbert, S.C. et al. A protein particle vaccine containing multiple malaria epitopes. Nat. Biotechnol. 15, 1280–1284 (1997).

    Article  CAS  Google Scholar 

  24. Sullivan, N.J., Sanchez, A., Rollin, P.E., Yang, Z.Y. & Nabel, G.J. Development of a preventive vaccine for Ebola virus infection in primates. Nature 408, 605–609 (2000).

    Article  CAS  Google Scholar 

  25. Amara, R.R. et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74 (2001).

    Article  CAS  Google Scholar 

  26. Marshall, E. Renewed assault on an old and deadly foe. Science 290, 428–430 (2000).

    Article  CAS  Google Scholar 

  27. Hill, A.V.S. et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).

    Article  CAS  Google Scholar 

  28. Herrington, D. et al. Successful immunization of humans with irradiated malaria sporozoites: humoral and cellular responses of the protected individuals. Am. J. Trop. Med. Hyg. 45, 539–547 (1991).

    Article  CAS  Google Scholar 

  29. Hoffman, S.L. et al. Sporozoite vaccine induces genetically restricted T cell elimination of malaria from hepatocytes. Science 244, 1078–1081 (1989).

    Article  CAS  Google Scholar 

  30. Robson, K.J. et al. A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite. Nature 335, 79–82 (1988).

    Article  CAS  Google Scholar 

  31. Moorthy, V.S. et al. Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine 21, 2004–2011 (2003).

    Article  Google Scholar 

  32. Chulay, J.D. et al. Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. Am. J. Trop. Med. Hyg. 35, 66–68 (1986).

    Article  CAS  Google Scholar 

  33. Ponnudurai, T., Meuwissen, J.H.E.T., Leeuwenberg, A.D.E.M., Verhave, J.P. & Lensen, A.H.W. The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 76, 242–250 (1982).

    Article  CAS  Google Scholar 

  34. Simpson, J.A., Aarons, L., Collins, W.E., Jeffery, G.M. & White, N.J. Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection. Parasitology 124, 247–263 (2002).

    Article  CAS  Google Scholar 

  35. Davis J.R. et al. Estimate of anti-Plasmodium falciparum sporozoite activity in humans vaccinated with synthetic circumsporozoite protein (NANP)3. Trans. R. Soc. Trop. Med. Hyg. 83, 748–750 (1989).

    Article  CAS  Google Scholar 

  36. Schneider, J. et al. A prime-boost immunisation regimen using DNA followed by recombinant modified vaccinia virus Ankara induces strong cellular immune responses against the Plasmodium falciparum TRAP antigen in chimpanzees. Vaccine 19, 4595–4602 (2001).

    Article  CAS  Google Scholar 

  37. Robson, K.J. et al. Natural polymorphism in the thrombospondin-related adhesive protein of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 58, 81–89 (1998).

    Article  CAS  Google Scholar 

  38. Hermsen, C.C. et al. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol. Biochem. Parasitol. 118, 247–251 (2001).

    Article  CAS  Google Scholar 

  39. Davis J.R. et al. Estimate of Plasmodium falciparum sporozoite content of Anopheles stephensi used to challenge human volunteers. Am. J. Trop. Med. Hyg. 40, 128–130 (1989).

    Article  CAS  Google Scholar 

  40. Stoute, J.A. et al. Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine. J. Infect. Dis. 178, 1139–1144 (1998).

    Article  CAS  Google Scholar 

  41. Flanagan, K. et al. Ex-vivo interferon γ immune response to TRAP in coastal Kenyans: longevity and risk of P. falciparum infection. Am. J. Trop. Med. Hyg (in press).

  42. Plebanski, M. et al. Protection from Plasmodium berghei infection by priming and boosting T cells to a single class I-restricted epitope with recombinant carriers suitable for human use. Eur. J. Immunol. 28, 4345–4355 (1998).

    Article  CAS  Google Scholar 

  43. Stittelaar, K.J. et al. Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 19, 3700–3709 (2001).

    Article  CAS  Google Scholar 

  44. Chakrabarti, S., Brechling, K. & Moss, B. Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 5, 3403–3409 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contribution made to this research by the subjects who volunteered to participate in this study. We thank M. Plebanski, A. J. McMichael, R. J. Anderson, P. Degano, M. Pinder, G. Cooke, D. Crook, A. Neubert and S. Correa for discussions and assistance, and the Wellcome Trust for funding the work. S.J.M. and V.S.M. are Wellcome Trust Tropical Medicine Fellows, and G.L.S. and A.V.S.H. are Wellcome Trust Principal Research Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian V S Hill.

Ethics declarations

Competing interests

M.R.is an employee of Powderject Vaccines,which manufactures the needleless delivery device.J.S.is an employee and cofounder of Oxxon Pharmaccines,Ltd.,which is developing prime-boost vaccines for therapeutic applications using MVA. A.V.S.H.and G.L.S.are cofounders of and consultants to Oxxon Pharmaccines,Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConkey, S., Reece, W., Moorthy, V. et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9, 729–735 (2003). https://doi.org/10.1038/nm881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing