Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

Genetic, cellular and immune approaches to disease therapy: past and future

Abstract

Advances in immunology and molecular genetics have accelerated our understanding of the genetic and cellular basis of many diseases. At the same time, remarkable progress in recombinant DNA technology has enabled the development of molecular and cellular treatments for infectious diseases, inherited disorders and cancer. This Perspective is intended to give a sample of the progress over the past ten years in cellular, genetic and immune therapy of disease. During this time, monoclonal antibody technology and cellular transplantation have begun to come of age in biomedicine. Innovations in gene delivery have not only catalyzed the nascent field of human gene therapy, but may also ultimately impact human health by advancing recombinant vaccine technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of recombinant antibody technology and clinical applications.
Figure 2: Diverse applications of cellular transplantation.
Figure 3: Gene transfer technology and applications to vaccines.

Similar content being viewed by others

References

  1. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bain, B. & Brazil, M. Adalimumab. Nat. Rev. Drug Discov. 2, 693–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Smolen, J.S. & Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2, 473–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Weinblatt, M.E. et al. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Weinberg, J.M., Saini, R. & Tutrone, W.D. Biologic therapy for psoriasis—the first wave: infliximab, etanercept, efalizumab, and alefacept. J. Drugs Dermatol. 1, 303–310 (2002).

    PubMed  Google Scholar 

  7. Scheinfeld, N. Adalimumab (HUMIRA): a review. J. Drugs Dermatol. 2, 375–377 (2003).

    PubMed  Google Scholar 

  8. Waldmann, T.A. T-cell receptors for cytokines: targets for immunotherapy of leukemia/lymphoma. Ann. Oncol. 11 (suppl. 1), 101–106 (2000).

    Article  PubMed  Google Scholar 

  9. Kreitman, R.J. et al. Recombinant toxins containing the variable domains of the anti-Tac monoclonal antibody to the interleukin-2 receptor kill malignant cells from patients with chronic lymphocytic leukemia. Blood 80, 2344–2352 (1992).

    CAS  PubMed  Google Scholar 

  10. Lin, T.S, Lucas, M.S. & Byrd, J.C. Rituximab in B-cell chronic lymphocytic leukemia. Semin. Oncol. 30, 483–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Zelenetz, A.D. A clinical and scientific overview of tositumomab and iodine I 131 tositumomab. Semin. Oncol. 30, 22–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mendelsohn, J. & Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 21, 2787–2799 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Breker, O.H. & Sandlie, I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2, 52–62 (2003).

    Article  Google Scholar 

  14. Erin, E.M., Williams, T.J., Barnes, P.J. & Hansel, T.T. Eotaxin receptor (CCR3) antagonism in asthma and allergic disease. Curr. Drug Targets Inflamm. Allergy 1, 201–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Lanier, B.Q. Newer aspects in the treatment of pediatric and adult asthma: monoclonal anti-IgE. Ann. Allergy Asthma Immunol. 90, 13–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Dudley, M.E. & Rosenberg, S.A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer 3, 666–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Riddell, S.R. & Greenberg, P.D. T cell therapy of human CMV and EBV infection in immunocompromised hosts. Rev. Med. Virol. 7, 181–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Heslop, H.E. et al. Transfer of EBV-specific CTL to prevent EBV lymphoma post bone marrow transplant. J. Clin. Apheresis 14, 154–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Rooney, C.M., Aguilar, L.K., Huls, M.H., Brenner, M.K. & Heslop, H.E. Adoptive immunotherapy of EBV-associated malignancies with EBV-specific cytotoxic T-cell lines. Curr. Top. Microbiol. Immunol. 258, 221–229 (2001).

    CAS  PubMed  Google Scholar 

  20. Heslop, H.E. et al. Immune therapy for EBV infections after hemopoietic stem-cell transplant. Cytotherapy 4, 433–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Riddell, S.R. & Greenberg, P.D. Cellular adoptive immunotherapy after bone marrow transplantation. Cancer Treat. Res. 76, 337–369 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Greenberg, P.D. et al. Genetic modification of T-cell clones for therapy of human viral and malignant diseases. Cancer J. Sci. Am. 4 (suppl. 1), S100–S105 (1998).

    PubMed  Google Scholar 

  23. Mellman, I. & Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Titus, T., Badet, L. & Gray, D.W. Islet cell transplantation for insulin-dependant diabetes mellitus: perspectives from the present and prospects for the future. Expert Rev. Mol. Med. 2, 1–28 (2000).

    CAS  PubMed  Google Scholar 

  25. Matthews, J.B., Ramos, E. & Bluestone, J.A. Clinical trials of transplant tolerance: slow but steady progress. Am. J. Transplant. 3, 794–803 (2003).

    Article  PubMed  Google Scholar 

  26. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bluestone, J.A. & Abbas, A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. & Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    Article  PubMed  Google Scholar 

  30. Tomita, S. et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J. Thorac. Cardiovasc. Surg. 123, 1132–1140 (2002).

    Article  PubMed  Google Scholar 

  31. Leinwand, L.A. Hope for a broken heart? Cell 114, 658–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Prockop, D.J., Gregory, C.A. & Spees, J.L. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc. Natl. Acad. Sci. USA 100 (suppl. 1), 11917–11923 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Al Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. & Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nabel, G.J. The future of gene therapy. Ernst Schering Res. Found. Workshop 1–16 (2003).

  35. Mullen, C.A. et al. Molecular analysis of T lymphocyte-directed gene therapy for adenosine deaminase deficiency: long-term expression in vivo of genes introduced with a retroviral vector. Hum. Gene Ther. 7, 1123–1129 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Rosenberg, S.A. et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323, 570–578 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, L., Nichols, T.C., Read, M.S., Bellinger, D.A. & Verma, I.M. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol. Ther. 1, 154–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. High, K.A. Gene transfer as an approach to treating hemophilia. Semin. Thromb. Hemost. 29, 107–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kay, M.A. et al. Evidence for gene transfer and expression of factor IX in hemophilia B patients treated with an AAV vector. Nat. Genet. 24, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Hacein-Bey-Abina, S. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346, 1185–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  42. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Woffendin, C., Ranga, U., Yang, Z., Xu, L. & Nabel, G.J. Expression of a protective gene prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc. Natl. Acad. Sci. USA 93, 2889–2894 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ranga, U. et al. Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc. Natl. Acad. Sci. USA 95, 1201–1206 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nabel, G.J. et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 90, 11307–11311 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khuri, F.R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. McManus, M.T. & Sharp, P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Oldstone, M.B.A. in Viruses, Plagues and History (Oxford University Press, New York, 1998).

    Google Scholar 

  49. Donnelly, J.J., Ulmer, J.B., Shiver, J.W. & Liu, M.A. DNA vaccines. Annu. Rev. Immunol. 15, 617–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Becker, S.I. et al. Protection of mice against Plasmodium yoelii sporozoite challenge with P. yoelii merozoite surface protein 1 DNA vaccines. Infect. Immun. 66, 3457–3461 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Doolan, D.L. et al. Circumventing genetic restriction of protection against malaria with multigene DNA immunization: CD8+ cell-, interferon γ-, and nitric oxide-dependent immunity. J. Exp. Med. 183, 1739–1746 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Gardner, M.J. et al. DNA vaccines against malaria: immunogenicity and protection in a rodent model. J Pharm. Sci. 85, 1294–1300 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Sedegah, M., Hedstrom, R., Hobart, P. & Hoffman, S.L. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc. Natl. Acad. Sci. USA 91, 9866–9870 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tascon, R.C. et al. Vaccination against tuberculosis by injection. Nat. Med. 2, 888–892 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, L. et al. Immunization for Ebola virus infection. Nat. Med. 4, 37–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Lodmell, D.L. et al. DNA immunization protects nonhuman primates against rabies virus. Nat. Med. 4, 949–952 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Martins, L.P., Lau, L.L., Asano, M.S. & Ahmed, R. DNA vaccination against persistent viral infection. J. Virol. 69, 2574–2582 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yokoyama, M., Zhang, J. & Whitton, J.L. DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection. J. Virol. 69, 2684–2688 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Manickan, E., Yu, Z., Rouse, R.J., Wire, W.S. & Rouse, B.T. Induction of protective immunity against herpes simplex virus with DNA encoding the immediate early protein ICP 27. Viral Immunol. 8, 53–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, G.P. Applied evolution. The progeny of sexual PCR. Nature 370, 324–325 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Schenk, D. Amyloid-β immunotherapy for Alzheimer's disease: the end of the beginning. Nat. Rev. Neurosci. 3, 824–828 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Davidson, M.H. et al. The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis 169, 113–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Rittershaus, C.W. et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 2106–2112 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Rappuoli, R. & Nabel, G. Vaccines: ideal drugs for the 21st century? Curr. Opin. Invest. Drugs 2, 45–46 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank A. Tislerics for help with preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabel, G. Genetic, cellular and immune approaches to disease therapy: past and future. Nat Med 10, 135–141 (2004). https://doi.org/10.1038/nm990

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing