Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Very large electro-optic responses in H-bonded heteroaromatic films grown by physical vapour deposition

Abstract

A crucial goal for modern telecommunications systems is development of very high-speed components for broadband (>100 GHz), all-optical signal/information processing. The core component of such technologies is the electro-optic modulator, which encodes electrical signals onto fibre-optic transmissions. A significant challenge therefore is obtaining materials that have large electro-optic responses and that can be readily fabricated into devices at low cost. We report here on the realization of high-response heteroaromatic organic chromophores that can be straightforwardly self-organized from the vapour phase into intrinsically acentric, high-quality, micrometre-scale films. These π-conjugated electro-optically active films (with second-order susceptibilities up to 100 pm V−1) are thermally stable and conveniently grown by a simple physical vapour deposition process in a few hours. Supramolecular acentricity is achieved without electric field poling, enforced by biomimetic heterocycle–hydroxycarbonyl head-to-tail hydrogen-bonding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Thermal analysis data for chromophores 1 (blue), 2 (red), and 3 (black).
Figure 3: Preparative pathways to films of type F1–F3.
Figure 4: Transmission optical absorption data for chromophores 1 (blue), 2 (red), and 3 (black).
Figure 5: Transmission polarized SHG spectroscopy.
Figure 6: Optical quality of H-bonded F2(1) films.
Figure 7: Chromophore polar orientation and microstructural stability.
Figure 8: Contact-mode AFM images of F2(1) films.

Similar content being viewed by others

References

  1. Ma, H., Jen, A. K.-Y. & Dalton, L. R. Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater. 14, 1339–1365 (2002).

    Article  CAS  Google Scholar 

  2. Lee, M. et al. Broadband modulation of light by using an electro-optic polymer Science 298, 1401–1404 (2002).

    Article  CAS  Google Scholar 

  3. Van der Boom, M. E. Nanostructured molecular materials for device-quality, highly efficient electrooptic poled polymers. Angew. Chem. Int. Edn 41, 3363–3366 (2002).

    Article  CAS  Google Scholar 

  4. Zyss, J. (ed.) Molecular Nonlinear Optics—Materials, Physics and Devices (Academic, San Diego, 1994).

    Google Scholar 

  5. Prasad, P. N. & Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

    Google Scholar 

  6. Marder, S. R., Kippelen, B., Jen, A. K. Y. & Peyghambarian, N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845–851 (1997).

    Article  CAS  Google Scholar 

  7. Yesodha, S. K., Sadashiva Pillai, C. K. & Tsutsumi, N. Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Progr. Polym. Sci. 29, 45–74 (2004).

    Article  CAS  Google Scholar 

  8. Hu, Z.-Y. et al. Trends in optical nonlinearity and thermal stability in electrooptic chromophores based upon the 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1, 1-dioxide acceptor. J. Phys. Chem. B 108, 8626–8630 (2004).

    Article  CAS  Google Scholar 

  9. Ma, H. et al. Highly efficient and thermally stable electro-optical dendrimers for photonics. Adv. Funct. Mater. 12, 565–574 (2002).,

    Article  CAS  Google Scholar 

  10. Le Bouder, T. et al. Synthesis, photophysical and nonlinear optical properties of macromolecular architectures featuring octupolar tris(bipyridine) ruthenium(II) moieties: evidence for a supramolecular self-ordering in a dendritic structure. J. Am. Chem. Soc. 125, 12284–12299 (2003).

    Article  CAS  Google Scholar 

  11. Brusatin, G. et al. Hybrid organic-inorganic materials containing poled zwitterionic push-pull chromophores. J. Eur. Ceram. Soc. 24, 1853–1856 (2004).

    Article  CAS  Google Scholar 

  12. Shi, Y. et al. Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288, 119–122 (2000).

    Article  CAS  Google Scholar 

  13. Schwartz, H. et al. Langmuir and Langmuir–Blodgett films of NLO active 2-(p-N-Alkyl-N-methylamino)benzylidene-1,3-indandione-π/A curves, UV-Vis spectra, and SHG behavior. UV-Vis spectra, and SHG behavior. J. Phys. Chem. B 105, 5914–5921 (2001).

    Article  CAS  Google Scholar 

  14. Ashwell, G. J., Jackson, P. D. & Crossland, W. A. Non-centrosymmetry and second-harmonic generation in Z-type Langmuir–Blodgett films. Nature 368, 438–40 (1994).

    Article  CAS  Google Scholar 

  15. Facchetti, A. et al. Layer-by-layer self-assembled pyrrole-based donor-acceptor chromophores as electro-optic materials. Chem. Mater. 15, 1064–1072 (2003).

    Article  CAS  Google Scholar 

  16. Van der Boom, M. E. et al. Nanoscale consecutive self-assembly of thin-film molecular materials for electrooptic switching. Chemical streamlining and ultrahigh response chromophores. Langmuir 18, 3704–3707 (2002).

    Article  CAS  Google Scholar 

  17. Lin, W., Lin, W., Wong, G. K. & Marks, T. J. Supramolecular approaches to second-order nonlinear optical materials. Self-assembly and microstructural characterization of intrinsically acentric [(aminophenyl)azo]pyridinium superlattices. J. Am. Chem. Soc. 118, 8034–8042 (1996).

    Article  CAS  Google Scholar 

  18. Lehn, J.-M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    Article  CAS  Google Scholar 

  19. Corbin, P. S., Zimmerman, S. C., Thiessen, P. A., Hawryluk, N. A. & Murray, T. J. Complexation-induced unfolding of heterocyclic ureas. Simple foldamers equilibrate with multiply hydrogen-bonded sheetlike structures. J. Am. Chem. Soc. 123, 10475–10488 (2001).

    Article  CAS  Google Scholar 

  20. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    Article  CAS  Google Scholar 

  21. Etter, M. C., MacDonald, J. C. & Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Cryst. B 46, 256–62 (1990).

    Article  Google Scholar 

  22. Rashid, A. N., Erny, C. & Gunter, P. Hydrogen-bond-directed orientation in nonlinear optical thin films. Adv. Mater. 15, 2024–2027 (2003).

    Article  CAS  Google Scholar 

  23. Zhu, P. et al. Vapor phase self-assembly of electrooptic thin films via triple hydrogen bonds. J. Am. Chem. Soc. 125, 11496–11497 (2003).

    Article  CAS  Google Scholar 

  24. Barth, J. V. et al. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 124, 7991–8000 (2002).

    Article  CAS  Google Scholar 

  25. Saadeh, H., Wang, L. & Yu, L. Supramolecular solid-state assemblies exhibiting electrooptic effects. J. Am. Chem. Soc. 122, 546–547 (2000).

    Article  CAS  Google Scholar 

  26. Cai, C. et al. Self-assembly in ultrahigh vacuum. Growth of organic thin films with a stable in-plane directional order. J. Am. Chem. Soc. 120, 8563–8564 (1998).

    Article  CAS  Google Scholar 

  27. Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 793–1896 (1997).

    Article  Google Scholar 

  28. Abbotto, A. et al. Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activity. Chem. Commun. 17, 2144–2145 (2003).

    Article  Google Scholar 

  29. Abbotto, A., Bradamante, S., Facchetti, A. & Pagani, G. A. Facile, regioselective synthesis of highly solvatochromic thiophene-spaced N-alkylpyridinium dicyanomethanides for second-harmonic generation. J. Org. Chem. 62, 5755–5765 (1997).

    Article  CAS  Google Scholar 

  30. Bradamante, S., Facchetti, A. & Pagani, G. A. Heterocycles as donor and acceptor units in push-pull conjugated molecules. Part 1. J. Phys. Org. Chem. 10, 6514–524 (1997).

    Article  Google Scholar 

  31. Oudar, J. L. & Chemla, D. S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (1977).

    Article  CAS  Google Scholar 

  32. Kajzar, F., Messier, J., Zyss, J. & Ledoux, I. Nonlinear interferometry in Langmuir–Blodgett multilayers of polydiacetylene. Opt. Comm. 45, 133–137 (1983).

    Article  CAS  Google Scholar 

  33. Simpson, G. J. & Rowlen, K. L. An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution. J. Am. Chem. Soc. 121, 2635–2636 (1999).

    Article  CAS  Google Scholar 

  34. Bloembergen, N. & Pershan, P. N. Light waves at the boundary of nonlinear media. Phys. Rev. 128, 606–622 (1962).

    Article  Google Scholar 

  35. Haller, M. et al. A novel lattice-hardening process to achieve highly efficient and thermally stable nonlinear optical polymers. Macromolecules 37, 688–690 (2004).

    Article  CAS  Google Scholar 

  36. Dalton, L. R. et al. From molecules to opto-chips: organic electro-optic materials. J. Mater. Chem. 9, 1905–1920 (1999).

    Article  CAS  Google Scholar 

  37. Lundquist, P. M. et al. Dispersion of second-order optical nonlinearity in chromophoric self-assembled films by optical parameters amplification: experiment and theory. Appl. Phys. Lett. 64, 2194–2196 (1994).

    Article  CAS  Google Scholar 

  38. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Edn 41, 48–76 (2002).

    Article  CAS  Google Scholar 

  39. Lundquist, P. M. Electro-optical characterization of poled-polymer films in transmission. Appl. Phys. Lett. 69, 901–903 (1996).

    Article  CAS  Google Scholar 

  40. Kuzyk, M. G. & Dirk C. W. in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, New York, 1998).

    Google Scholar 

  41. Sigelle, M. & Hierle, R. Determination of the electrooptic coefficients of 3-methyl-4-nitropyridine 1-oxide by an interferometric phase-modulation technique. J. Appl. Phys. 52, 4199–4204 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank DARPA/ONR (SP01P7001R-A1/N00014-00-C), the NSF MRSEC program (DMR 0076077), and INSTM for financial support. E.A. thanks CNR for a postdoctoral fellowship. We also thank A. Abbotto and H. Kang for discussions, P. Dutta and G. Evmenenko for XRR data, and S.-T. Ho and Z. Liu for preliminary electro-optic coefficient measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobin J. Marks or Giorgio A. Pagani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchetti, A., Annoni, E., Beverina, L. et al. Very large electro-optic responses in H-bonded heteroaromatic films grown by physical vapour deposition. Nature Mater 3, 910–917 (2004). https://doi.org/10.1038/nmat1259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmat1259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing