Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance solution-processed polymer ferroelectric field-effect transistors

Abstract

We demonstrate a rewritable, non-volatile memory device with flexible plastic active layers deposited from solution. The memory device is a ferroelectric field-effect transistor (FeFET) made with a ferroelectric fluoropolymer and a bisalkoxy-substituted poly(p-phenylene vinylene) semiconductor material. The on- and off-state drain currents differ by several orders of magnitude, and have a long retention time, a high programming cycle endurance and short programming time. The remanent semiconductor surface charge density in the on-state has a high value of 18 mC m−2, which explains the large on/off ratio. Application of a moderate gate field raises the surface charge to 26 mC m−2, which is of a magnitude that is very difficult to obtain with conventional FETs because they are limited by dielectric breakdown of the gate insulator. In this way, the present ferroelectric–semiconductor interface extends the attainable field-effect band bending in organic semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferroelectric hysteresis loops of a P(VDF/TrFE) polymer capacitor device.
Figure 2: Transfer characteristics as a function of temperature of MEH-PPV FETs (symbols) and the modelling result (lines).
Figure 3: Hysteretic drain current as a function of gate voltage for polymer FeFETs.
Figure 4: Channel conductance G versus surface charge density ρ for a PTrFE FET, the model derived from it and the method of calculating the remanent ρ in a polymer FeFET.
Figure 5: Data retention time, programming cycle endurance and programming time measurements.

Similar content being viewed by others

References

  1. Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).

    Article  CAS  Google Scholar 

  2. Kim, W. S., Ha, S.-M., Yang, J.-K. & Park, H.-H. Ferroelectric-gate field effect transistors using Nd2Ti2O7/Y2O3/Si structures. Thin Solid Films 398–399, 663–667 (2001).

    Article  Google Scholar 

  3. Ren, T.-L. et al. Fabrication and properties of silicon-based PZT thin films for MFSFET applications. Microelectr. Eng. 66, 554–560 (2003).

    Article  CAS  Google Scholar 

  4. Fitsilis, M., Kohlstedt, H., Waser, R. & Ullmann, M. A new concept for using ferroelectric transistors in nonvolatile memories. Integr. Ferroelectrics 60, 45–58 (2004).

    Article  CAS  Google Scholar 

  5. Li, T., Hsu, S. T., Ulrich, B., Stecker, L. & Evans, D. R. One transistor ferroelectric memory devices with improved retention characteristics. Jpn J. Appl. Phys. 41, 6890–6894 (2002).

    Article  CAS  Google Scholar 

  6. Li, T., Hsu, S. T., Ulrich, B. D. & Evans, D. R. The thermal stability of one-transistor ferroelectric memory with Pt-Pb5Ge3O11-Ir-poly-SiO2-Si gate stack. IEEE Trans. Electron. Dev. 50, 2280–2285 (2003).

    Article  CAS  Google Scholar 

  7. Xiong, S. et al. Memory properties of a ferroelectric gate field-effect transistor with an adjoining metal-ferroelectric-metal assistance cell. J. Appl. Phys. 94, 2559–2562 (2003).

    Article  CAS  Google Scholar 

  8. Aizawa, K., Park, B.-E., Kawashima, Y., Takahashi, K. & Ishiwara, H. Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors. Appl. Phys. Lett. 85, 3199–3201 (2004).

    Article  CAS  Google Scholar 

  9. Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).

    Article  CAS  Google Scholar 

  10. Möller, S., Perlov, C., Jackson, W., Taussig, C. & Forrest, S. R. A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003).

    Article  Google Scholar 

  11. Bozano, L. D., Kean, B. W., Deline, V. R., Salem, J. R. & Scott, J. C. Mechanism for bistability in organic memory elements. Appl. Phys. Lett. 84, 607–609 (2004).

    Article  CAS  Google Scholar 

  12. Velu, G. et al. Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator. Appl. Phys. Lett. 79, 659–661 (2001).

    Article  CAS  Google Scholar 

  13. Kodzasa, T., Yoshida, M., Uemura, S. & Kamata, T. Memory effects of pentacene MFS-FET. Synth. Met. 137, 943–944 (2003).

    Article  CAS  Google Scholar 

  14. Schroeder, R., Majewski, L. A. & Grell, M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv. Mater. 16, 633–636 (2004).

    Article  CAS  Google Scholar 

  15. Unni, K. N. N., de Bettignies, R., Dabos-Seignon, S. & Nunzi, J.-M. A nonvolatile memory element based on an organic field-effect transistor. Appl. Phys. Lett. 85, 1823–1825 (2004).

    Article  CAS  Google Scholar 

  16. Matsuo, Y., Ijichi, T., Yamada, H., Hatori, J. & Ikehata, S. Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene. Centr. Eur. J. Phys. 2, 357–366 (2004).

    Google Scholar 

  17. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18, 143–211 (1989).

    Article  CAS  Google Scholar 

  18. Osaki, S. Effects of annealing upon molecular orientation and microwave dielectric anisotropy in polyimide films. Polym. J. 29, 807–810 (1997).

    Article  CAS  Google Scholar 

  19. Vissenberg, M. C. J. M. & Matters, M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57, 12964–12967 (1998).

    Article  CAS  Google Scholar 

  20. Miller, S. L. & McWhorter, P. J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72, 5999–6010 (1992).

    Article  CAS  Google Scholar 

  21. Naber, R. C. G., Blom, P. W. M., Marsman, A. W. & de Leeuw, D. M. Low voltage switching of a spin cast ferroelectric polymer. Appl. Phys. Lett. 85, 2032–2034 (2004).

    Article  CAS  Google Scholar 

  22. Meijer, E. J. et al. Switch-on voltage in disordered organic field-effect transistors. Appl. Phys. Lett. 80, 3838–3840 (2002).

    Article  CAS  Google Scholar 

  23. Brown, A. R., Jarrett, C. P., de Leeuw, D. M. & Matters, M. Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37–55 (1997).

    Article  CAS  Google Scholar 

  24. Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. & Khaffaf, S. M. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).

    Article  CAS  Google Scholar 

  25. Wurfel, P. & Batra, I. P. Depolarization-field-induced instability in thin ferroelectric films—experiment and theory. Phys. Rev. B 8, 5126–5133 (1973).

    Article  CAS  Google Scholar 

  26. Tanase, C., Blom, P. W. M., de Leeuw, D. M. & Meijer, E. J. Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Status Solidi 201, 1236–1245 (2004).

    Article  CAS  Google Scholar 

  27. Seager, C. H., McIntyre, D. C., Warren, W. L. & Tuttle, B. A. Charge trapping and device behavior in ferroelectric memories. Appl. Phys. Lett. 68, 2660–2662 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the Dutch Science Foundation NWO/FOM and the Dutch Polymer Institute (project no. 276), and the EC (project PolyApply IST-IP-507143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald C. G. Naber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naber, R., Tanase, C., Blom, P. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater 4, 243–248 (2005). https://doi.org/10.1038/nmat1329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmat1329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing