Abstract
We demonstrate a rewritable, non-volatile memory device with flexible plastic active layers deposited from solution. The memory device is a ferroelectric field-effect transistor (FeFET) made with a ferroelectric fluoropolymer and a bisalkoxy-substituted poly(p-phenylene vinylene) semiconductor material. The on- and off-state drain currents differ by several orders of magnitude, and have a long retention time, a high programming cycle endurance and short programming time. The remanent semiconductor surface charge density in the on-state has a high value of 18 mC m−2, which explains the large on/off ratio. Application of a moderate gate field raises the surface charge to 26 mC m−2, which is of a magnitude that is very difficult to obtain with conventional FETs because they are limited by dielectric breakdown of the gate insulator. In this way, the present ferroelectric–semiconductor interface extends the attainable field-effect band bending in organic semiconductors.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).
Kim, W. S., Ha, S.-M., Yang, J.-K. & Park, H.-H. Ferroelectric-gate field effect transistors using Nd2Ti2O7/Y2O3/Si structures. Thin Solid Films 398–399, 663–667 (2001).
Ren, T.-L. et al. Fabrication and properties of silicon-based PZT thin films for MFSFET applications. Microelectr. Eng. 66, 554–560 (2003).
Fitsilis, M., Kohlstedt, H., Waser, R. & Ullmann, M. A new concept for using ferroelectric transistors in nonvolatile memories. Integr. Ferroelectrics 60, 45–58 (2004).
Li, T., Hsu, S. T., Ulrich, B., Stecker, L. & Evans, D. R. One transistor ferroelectric memory devices with improved retention characteristics. Jpn J. Appl. Phys. 41, 6890–6894 (2002).
Li, T., Hsu, S. T., Ulrich, B. D. & Evans, D. R. The thermal stability of one-transistor ferroelectric memory with Pt-Pb5Ge3O11-Ir-poly-SiO2-Si gate stack. IEEE Trans. Electron. Dev. 50, 2280–2285 (2003).
Xiong, S. et al. Memory properties of a ferroelectric gate field-effect transistor with an adjoining metal-ferroelectric-metal assistance cell. J. Appl. Phys. 94, 2559–2562 (2003).
Aizawa, K., Park, B.-E., Kawashima, Y., Takahashi, K. & Ishiwara, H. Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors. Appl. Phys. Lett. 85, 3199–3201 (2004).
Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).
Möller, S., Perlov, C., Jackson, W., Taussig, C. & Forrest, S. R. A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003).
Bozano, L. D., Kean, B. W., Deline, V. R., Salem, J. R. & Scott, J. C. Mechanism for bistability in organic memory elements. Appl. Phys. Lett. 84, 607–609 (2004).
Velu, G. et al. Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator. Appl. Phys. Lett. 79, 659–661 (2001).
Kodzasa, T., Yoshida, M., Uemura, S. & Kamata, T. Memory effects of pentacene MFS-FET. Synth. Met. 137, 943–944 (2003).
Schroeder, R., Majewski, L. A. & Grell, M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv. Mater. 16, 633–636 (2004).
Unni, K. N. N., de Bettignies, R., Dabos-Seignon, S. & Nunzi, J.-M. A nonvolatile memory element based on an organic field-effect transistor. Appl. Phys. Lett. 85, 1823–1825 (2004).
Matsuo, Y., Ijichi, T., Yamada, H., Hatori, J. & Ikehata, S. Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene. Centr. Eur. J. Phys. 2, 357–366 (2004).
Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18, 143–211 (1989).
Osaki, S. Effects of annealing upon molecular orientation and microwave dielectric anisotropy in polyimide films. Polym. J. 29, 807–810 (1997).
Vissenberg, M. C. J. M. & Matters, M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57, 12964–12967 (1998).
Miller, S. L. & McWhorter, P. J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72, 5999–6010 (1992).
Naber, R. C. G., Blom, P. W. M., Marsman, A. W. & de Leeuw, D. M. Low voltage switching of a spin cast ferroelectric polymer. Appl. Phys. Lett. 85, 2032–2034 (2004).
Meijer, E. J. et al. Switch-on voltage in disordered organic field-effect transistors. Appl. Phys. Lett. 80, 3838–3840 (2002).
Brown, A. R., Jarrett, C. P., de Leeuw, D. M. & Matters, M. Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37–55 (1997).
Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. & Khaffaf, S. M. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).
Wurfel, P. & Batra, I. P. Depolarization-field-induced instability in thin ferroelectric films—experiment and theory. Phys. Rev. B 8, 5126–5133 (1973).
Tanase, C., Blom, P. W. M., de Leeuw, D. M. & Meijer, E. J. Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Status Solidi 201, 1236–1245 (2004).
Seager, C. H., McIntyre, D. C., Warren, W. L. & Tuttle, B. A. Charge trapping and device behavior in ferroelectric memories. Appl. Phys. Lett. 68, 2660–2662 (1996).
Acknowledgements
We acknowledge financial support by the Dutch Science Foundation NWO/FOM and the Dutch Polymer Institute (project no. 276), and the EC (project PolyApply IST-IP-507143).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Naber, R., Tanase, C., Blom, P. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater 4, 243–248 (2005). https://doi.org/10.1038/nmat1329
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nmat1329
This article is cited by
-
Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications
Microsystems & Nanoengineering (2023)
-
Research progress on 2D ferroelectric and ferrovalley materials and their neuromorphic application
Science China Physics, Mechanics & Astronomy (2023)
-
Recent development of E-field control of interfacial magnetism in multiferroic heterostructures
Nano Research (2023)
-
Advances in flexible organic field-effect transistors and their applications for flexible electronics
npj Flexible Electronics (2022)
-
Charge carrier modulation in graphene on ferroelectric single-crystal substrates
NPG Asia Materials (2022)