Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface

Abstract

Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid–fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid–fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong ‘film state’. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile ‘detergent state’. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid–fluid interfaces more generally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanical properties of self-assembled AM1 and Lac21 architectures at the air–water interface.
Figure 2: Switching of the mechanical properties of self-assembled AM1 architectures at the air–water interface.
Figure 3: Coalescence of a Zn(II)-AM1-stabilized toluene-in-water emulsion by addition of acid.
Figure 4: Modulation of the stability of a Zn(II)-AM1 foam by acidification and reneutralization.

Similar content being viewed by others

References

  1. He, L. Z., Dexter, A. F. & Middelberg, A. P. J. Biomolecular engineering at interfaces. Chem. Eng. Sci. 61, 989–1003 (2006).

    Article  Google Scholar 

  2. Fairman, R. & Akerfeldt, K. S. Peptides as novel smart materials. Curr. Opin. Struct. Biol. 15, 453–463 (2005).

    Article  Google Scholar 

  3. Morreale, G., Lee, E. G., Jones, D. B. & Middelberg, A. P. J. Bioprocess-centered molecular design (BMD) for the efficient production of an interfacially active peptide. Biotechnol. Bioeng. 87, 912–923 (2004).

    Article  Google Scholar 

  4. Zhang, S. & Zhao, X. Design of molecular biological materials using peptide motifs. J. Mater. Chem. 14, 2082–2086 (2004).

    Article  Google Scholar 

  5. Rajagopal, K. & Schneider, J. P. Self-assembling peptides and proteins for nanotechnological applications. Curr. Opin. Struct. Biol. 14, 480–486 (2004).

    Article  Google Scholar 

  6. Kohn, W. D. & Hodges, R. S. De novo design of α-helical coiled coils and bundles: models for the development of protein-design principles. Trends Biotechnol. 16, 379–389 (1998).

    Article  Google Scholar 

  7. Cohen, C. & Parry, D. A. D. α-Helical coiled coils and bundles: how to design an α-helical protein. Proteins Struct. Funct. Genet. 7, 1–15 (1990).

    Article  Google Scholar 

  8. Zhang, S. G. & Altman, M. Peptide self-assembly in functional polymer science and engineering. React. Funct. Polym. 41, 91–102 (1999).

    Article  Google Scholar 

  9. Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).

    Article  Google Scholar 

  10. Schneider, J. P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002).

    Article  Google Scholar 

  11. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  Google Scholar 

  12. Vauthey, S., Santoso, S., Gong, H. Y., Watson, N. & Zhang, S. G. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. USA 99, 5355–5360 (2002).

    Article  Google Scholar 

  13. Lu, J. R. et al. Interfacial nano-structuring of designed peptides regulated by solution pH. J. Am. Chem. Soc. 126, 8940–8947 (2004).

    Article  Google Scholar 

  14. Stevens, M. M. et al. pH-Dependent behavior of surface-immobilized artificial leucine zipper proteins. Langmuir 20, 7747–7752 (2004).

    Article  Google Scholar 

  15. Hong, Y. S., Lau, L. S., Legge, R. L. & Chen, P. Critical self-assembly concentration of an ionic-complementary peptide EAK16-I. J. Adhes. 80, 913–931 (2004).

    Article  Google Scholar 

  16. Middelberg, A. P. J., Radke, C. J. & Blanch, H. W. Peptide interfacial adsorption is kinetically limited by the thermodynamic stability of self association. Proc. Natl Acad. Sci. USA 97, 5054–5059 (2000).

    Article  Google Scholar 

  17. Degrado, W. F. & Lear, J. D. Induction of peptide conformation at apolar/water interfaces. 1. A study with model peptides of defined hydrophobic periodicity. J. Am. Chem. Soc. 107, 7684–7689 (1985).

    Article  Google Scholar 

  18. Bos, M. A. & van Vliet, T. Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interface Sci. 91, 437–471 (2001).

    Article  Google Scholar 

  19. Wilde, P. J. Interfaces: their role in foam and emulsion behaviour. Curr. Opin. Colloid Interface Sci. 5, 176–181 (2000).

    Article  Google Scholar 

  20. Jones, D. B. & Middelberg, A. P. J. Micromechanical testing of interfacial protein networks demonstrates ensemble behaviour characteristic of a nanostructured biomaterial. Langmuir 18, 5585–5591 (2002).

    Article  Google Scholar 

  21. McClements, D. J. Protein-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 9, 305–313 (2004).

    Article  Google Scholar 

  22. Tcholakova, S., Denkov, N. D., Sidzhakova, D., Ivanov, I. B. & Campbell, B. Effects of electrolyte concentration and pH on the coalescence stability of β-lactoglobulin emulsions: experiment and interpretation. Langmuir 21, 4842–4855 (2005).

    Article  Google Scholar 

  23. Das, K. P. & Kinsella, J. E. Effect of heat denaturation on the adsorption of beta-lactoglobulin at the oil-water interface and on coalescence stability of emulsions. J. Colloid Interface Sci. 139, 551–560 (1990).

    Article  Google Scholar 

  24. Dickinson, E., Murray, B. S. & Stainsby, G. Coalescence stability of emulsion-sized droplets at a planar oil-water interface and the relationship to protein film surface rheology. J. Chem. Soc. Faraday Trans. I 84, 871–883 (1988).

    Article  Google Scholar 

  25. Aveyard, R. & Clint, J. H. Foam and thin film breakdown processes. Curr. Opin. Colloid Interface Sci. 1, 764–770 (1996).

    Article  Google Scholar 

  26. van Aken, G. A. in Food Emulsions (eds Friberg, S. E., Larsson, K. & Sjoblom, J.) 299–325 (Marcel Dekker, New York, 2004).

    Google Scholar 

  27. Fairman, R. et al. Characterization of a new four-chain coiled-coil: influence of chain length on stability. Protein Sci. 4, 1457–1469 (1995).

    Article  Google Scholar 

  28. Jones, D. B. & Middelberg, A. P. J. Mechanical properties of interfacially adsorbed peptide networks. Langmuir 18, 10357–10362 (2002).

    Article  Google Scholar 

  29. Jones, D. B. & Middelberg, A. P. J. Direct determination of the mechanical properties of an interfacially adsorbed protein film. Chem. Eng. Sci. 57, 1711–1722 (2002).

    Article  Google Scholar 

  30. Cameron, D. R., Weber, M. E., Idziak, E. S., Neufeld, R. J. & Cooper, D. G. Determination of interfacial areas in emulsions using turbidimetric and droplet size data: correction of the formula for emulsifying activity index. J. Agric. Food Chem. 39, 655–659 (1991).

    Article  Google Scholar 

  31. Adam, N. K. & Miller, J. G. F. The structure of surface films Part XIX—The effect of alkaline solutions on films with various end groups. Proc. R. Soc. Lond. A 142, 416–422 (1933).

    Article  Google Scholar 

  32. Schulman, J. H. & Hughes, A. H. On the surface of unimolecular films-Part IV—The effect of the underlying solution and transition phenomena in the film. Proc. R. Soc. Lond. A 138, 430–450 (1932).

    Article  Google Scholar 

  33. Adam, N. K. & Miller, J. G. F. The structure of surface films Part XVIII—The effect of alkalinity in the underlying solution on films of fatty acids. Proc. R. Soc. Lond. A 142, 401–415 (1933).

    Article  Google Scholar 

  34. Rosano, H. L., Christodoulou, A. P. & Feinstein, M. E. Competition of cations at charged micelle and monolayer interfaces. J. Colloid Interface Sci. 29, 335–344 (1969).

    Article  Google Scholar 

  35. Goddard, E. D. & Ackilli, J. A. Monolayer properties of fatty acids. J. Colloid Sci. 18, 585–595 (1963).

    Article  Google Scholar 

  36. Sengupta, T. & Papadopoulos, K. D. Kemps triacid at oil-water interfaces. J. Colloid Interface Sci. 163, 234–244 (1994).

    Article  Google Scholar 

  37. Kanicky, J. R., Poniatowski, A. F., Mehta, N. R. & Shah, D. O. Cooperativity among molecules at interfaces in relation to various technological processes: Effect of chain length on the pK(a) of fatty acid salt solutions. Langmuir 16, 172–177 (2000).

    Article  Google Scholar 

  38. Sengupta, T., Yates, M. & Papadopoulos, K. D. Metal complexation with surface-active Kemp’s triacid. Colloids Surf. A 148, 259–270 (1999).

    Article  Google Scholar 

  39. Jong, L. I. & Abbott, N. L. A chemodegradable surfactant system based on oxidation of disulfide bonds using hypochlorite. Langmuir 16, 5553–5561 (2000).

    Article  Google Scholar 

  40. Chen, C. M., Lu, C. H., Chang, C. H., Yang, Y. M. & Maa, J. R. Influence of pH on the stability of oil-in-water emulsions stabilized by a splittable surfactant. Colloids Surf. A 170, 173–179 (2000).

    Article  Google Scholar 

  41. Gallardo, B. S. & Abbott, N. L. Active control of interfacial properties: a comparison of dimeric and monomeric ferrocenyl surfactants at the surface of aqueous solutions. Langmuir 13, 203–208 (1997).

    Article  Google Scholar 

  42. Shin, J. Y. & Abbott, N. L. Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15, 4404–4410 (1999).

    Article  Google Scholar 

  43. Burgess, D. J. & Sahin, N. O. Interfacial rheological and tension properties of protein films. J. Colloid Interface Sci. 189, 74–82 (1997).

    Article  Google Scholar 

  44. Martin, A. H., Grolle, K., Bos, M. A., Stuart, M. A. & van Vliet, T. Network forming properties of various proteins adsorbed at the air/water interface in relation to foam stability. J. Colloid Interface Sci. 254, 175–183 (2002).

    Article  Google Scholar 

  45. Abbott, N. L. New horizons for surfactant science in chemical engineering. AIChE J. 47, 2634–2639 (2001).

    Article  Google Scholar 

  46. Windhab, E., Dressler, M., Feigl, K., Fischer, P. & Megias-Alguacil, D. Emulsion processing—from single-drop deformation to design of complex processes and products. Chem. Eng. Sci. 60, 2101–2113 (2005).

    Article  Google Scholar 

  47. Jones, D. B. & Middelberg, A. P. J. Interfacial protein networks and their impact on droplet breakup. AIChE J. 49, 1533–1541 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Australian Research Council (Grant FF0348465). A.F.D. acknowedges a University of Queensland Postdoctoral Research Fellowship. A.S.M. acknowledges an Australian Postgraduate Award and a University of Queensland School of Engineering Super Scholarship. A.P.J.M. acknowledges an Australian Research Council Federation Fellowship. This research was facilitated by access to the Australian Proteome Analysis Facility established under the Australian Government’s Major National Research Facilities program. Patent applied for.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton P. J. Middelberg.

Ethics declarations

Competing interests

International patent application PCT/AU2006/00236, Peptide Networks, relates to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dexter, A., Malcolm, A. & Middelberg, A. Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface. Nature Mater 5, 502–506 (2006). https://doi.org/10.1038/nmat1653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmat1653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing