

Zero-field optical manipulation of magnetic ions in semiconductors

R. C. MYERS, M. H. MIKKELSEN, J.-M. TANG, A. C. GOSSARD, M. E. FLATTÉ AND D. D. AWSCHALOM

Nature Materials 7, 203-208 (2008).

Owing to a printing error, the character denoting exchange interaction appeared incorrectly, it should have appeared as \mathcal{J} . The corrected text is below:

Page 3, second column, second paragraph:

For a Heisenberg hamiltonian $H = \sum_{i < j} \hat{J}(R_i - R_j) J_i J_j$, where i and j label all the Mn spins in the solid at position R, $\mathcal{J} = \sum_i \mathcal{J}(R_i)$ and $\lambda = \mathcal{J}(J_{Mn})$. Using methods developed previously^{17,19}, we calculate the average interaction energy between two Mn spins at the average separation for a given density by using an effective Bohr radius of 13 Å. We estimate \mathcal{J} from the interaction energy...

Page 5, second column, first line:

Assuming the values of $\mathcal J$ calculated above...