Table 2 Summary of results for the cell identification challenges
From: Critical assessment of automated flow cytometry data analysis techniques
F-measurea | Â | Â | ||||||
---|---|---|---|---|---|---|---|---|
 | GvHD | DLBCL | HSCT | WNV | ND | Mean | Runtime h:mm:ssb | Rank scorec |
Challenge 1: completely automated | ||||||||
ADICyt | 0.81 (0.72, 0.88) | 0.93 (0.91, 0.95) | 0.93 (0.90, 0.96) | 0.86 (0.84, 0.87) | 0.92 (0.92, 0.93) | 0.89 | 4:50:37 | 52 |
flowMeans | 0.88 (0.82, 0.93) | 0.92 (0.89, 0.95) | 0.92 (0.90, 0.94) | 0.88 (0.86, 0.90) | 0.85 (0.76, 0.92) | 0.89 | 0:02:18 | 49 |
FLOCK | 0.84 (0.76, 0.90) | 0.88 (0.85, 0.91) | 0.86 (0.83, 0.89) | 0.83 (0.80, 0.86) | 0.91 (0.89, 0.92) | 0.86 | 0:00:20 | 45 |
FLAME | 0.85 (0.77, 0.91) | 0.91 (0.88, 0.93) | 0.94 (0.92, 0.95) | 0.80 (0.76, 0.84) | 0.90 (0.89, 0.90) | 0.88 | 0:04:20 | 44 |
SamSPECTRAL | 0.87 (0.81, 0.93) | 0.86 (0.82, 0.90) | 0.85 (0.82, 0.88) | 0.75 (0.60, 0.85) | 0.92 (0.92, 0.93) | 0.85 | 0:03:51 | 39 |
MMPCA | 0.84 (0.74, 0.93) | 0.85 (0.82, 0.88) | 0.91 (0.88, 0.94) | 0.64 (0.51, 0.71) | 0.76 (0.75, 0.77) | 0.80 | 0:00:03 | 29 |
FlowVB | 0.85 (0.79, 0.91) | 0.87 (0.85, 0.90) | 0.75 (0.70, 0.79) | 0.81 (0.78, 0.83) | 0.85 (0.84, 0.86) | 0.82 | 0:38:49 | 28 |
MM | 0.83 (0.74, 0.91) | 0.90 (0.87, 0.92) | 0.73 (0.66, 0.80) | 0.69 (0.60, 0.75) | 0.75 (0.74, 0.76) | 0.78 | 0:00:10 | 28 |
flowClust/Merge | 0.69 (0.55, 0.79) | 0.84 (0.81, 0.86) | 0.81 (0.77, 0.85) | 0.77 (0.74, 0.79) | 0.73 (0.58, 0.85) | 0.77 | 2:12:00 | 24 |
L2kmeans | 0.64 (0.57, 0.72) | 0.79 (0.74, 0.83) | 0.70 (0.65, 0.75) | 0.78 (0.75, 0.81) | 0.81 (0.80, 0.82) | 0.74 | 0:08:03 | 20 |
CDP | 0.52 (0.46, 0.58) | 0.87 (0.85, 0.90) | 0.50 (0.48, 0.52) | 0.71 (0.68, 0.75) | 0.88 (0.86, 0.90) | 0.70 | 0:00:57 | 19 |
SWIFT | 0.63 (0.56, 0.70) | 0.67 (0.62, 0.71) | 0.59 (0.55, 0.62) | 0.69 (0.64, 0.74) | 0.87 (0.86, 0.88) | 0.69 | 1:14:50 | 15 |
Ensemble clustering | 0.88 | 0.94 | 0.97 | 0.88 | 0.94 | 0.92 | – | 64 |
Challenge 2: manually tuned | ||||||||
ADICyt | 0.81 (0.71, 0.89) | 0.93 (0.91, 0.95) | 0.93 (0.90, 0.96) | 0.86 (0.84, 0.87) | 0.92 (0.92, 0.93) | 0.89 | 4:50:37 | 34 |
SamSPECTRAL | 0.87 (0.79, 0.94) | 0.92 (0.89, 0.94) | 0.90 (0.86, 0.93) | 0.85 (0.83, 0.88) | 0.91 (0.91, 0.92) | 0.89 | 0:06:47 | 31 |
FLOCK | 0.84 (0.76, 0.90) | 0.88 (0.85, 0.91) | 0.86 (0.83, 0.89) | 0.84 (0.82, 0.86) | 0.89 (0.87, 0.91) | 0.86 | 0:00:15 | 23 |
FLAME | 0.81 (0.75, 0.87) | 0.87 (0.84, 0.90) | 0.87 (0.82, 0.90) | 0.84 (0.83, 0.85) | 0.87 (0.86, 0.87) | 0.85 | 0:04:20 | 23 |
SamSPECTRAL-FK | 0.87 (0.80, 0.94) | 0.85 (0.81, 0.89) | 0.90 (0.86, 0.92) | 0.76 (0.71, 0.81) | 0.92 (0.91, 0.93) | 0.86 | 0:04:25 | 23 |
CDP | 0.74 (0.67, 0.80) | 0.89 (0.86, 0.91) | 0.90 (0.88, 0.92) | 0.75 (0.71, 0.78) | 0.86 (0.85, 0.88) | 0.83 | 0:00:18 | 19 |
flowClust/Merge | 0.69 (0.53, 0.78) | 0.87 (0.85, 0.90) | 0.96 (0.94, 0.97) | 0.77 (0.75, 0.79) | 0.88 (0.81, 0.91) | 0.83 | 2:12:00 | 18 |
NMFcurvHDR | 0.76 (0.69, 0.82) | 0.84 (0.83, 0.86) | 0.70 (0.67, 0.74) | 0.81 (0.77, 0.84) | 0.83 (0.83, 0.84) | 0.79 | 1:39:42 | 13 |
Ensemble clustering | 0.87 | 0.94 | 0.98 | 0.87 | 0.92 | 0.91 | – | 41 |
Challenge 3: assignment of cells to populations with predefined number of populations | ||||||||
ADICyt | 0.91 (0.84, 0.96) | 0.96 (0.94, 0.97) | 0.98 (0.97, 0.99) | Â | Â | 0.95 | 0:10:49 | 26.2 |
SamSPECTRAL | 0.85 (0.75, 0.93) | 0.93 (0.91, 0.95) | 0.97 (0.95, 0.98) | Â | Â | 0.92 | 0:02:30 | 26.2 |
flowMeans | 0.91 (0.84, 0.96) | 0.94 (0.91, 0.96) | 0.95 (0.93, 0.96) | Â | Â | 0.93 | 0:00:01 | 23.4 |
TCLUST | 0.93 (0.91, 0.96) | 0.93 (0.91, 0.95) | 0.93 (0.90, 0.95) | Â | Â | 0.93 | 0:00:40 | 23.4 |
FLOCK | 0.86 (0.79, 0.93) | 0.92 (0.89, 0.94) | 0.97 (0.95, 0.98) | Â | Â | 0.92 | 0:00:02 | 22.2 |
CDP | 0.85 (0.77, 0.92) | 0.92 (0.89, 0.94) | 0.76 (0.72, 0.81) | Â | Â | 0.84 | 0:00:21 | 16.9 |
flowClust/Merge | 0.88 (0.82, 0.93) | 0.90 (0.86, 0.94) | 0.83 (0.79, 0.88) | Â | Â | 0.87 | 0:49:24 | 15.9 |
FLAME | 0.85 (0.79, 0.91) | 0.90 (0.86, 0.93) | 0.86 (0.82, 0.91) | Â | Â | 0.87 | 0:03:20 | 15.9 |
SWIFT | 0.90 (0.84, 0.95) | 0.00 (0.00, 0.00) | 0.88 (0.84, 0.92) | Â | Â | 0.59 | 0:01:37 | 11.9 |
flowKoh | 0.85 (0.80, 0.90) | 0.85 (0.82, 0.88) | 0.87 (0.84, 0.91) | Â | Â | 0.86 | 0:00:42 | 9.5 |
NMF | 0.74 (0.69, 0.78) | 0.84 (0.80, 0.88) | 0.80 (0.76, 0.84) | Â | Â | 0.79 | 0:01:00 | 7.5 |
Ensemble clustering | 0.95 | 0.97 | 0.98 |  |  | 0.97 | – | 35 |
Challenge 4: supervised approaches trained using human-provided gates | ||||||||
RadialSVM | 0.89 (0.83, 0.95) | 0.84 (0.80, 0.87) | 0.98 (0.96, 0.99) | 0.96 (0.94, 0.97) | 0.93 (0.92, 0.94) | 0.92 | 0:00:18 | 21 |
flowClust/Merge | 0.92 (0.88, 0.95) | 0.92 (0.89, 0.94) | 0.95 (0.92, 0.97) | 0.84 (0.82, 0.86) | 0.89 (0.88, 0.90) | 0.90 | 5:31:50 | 19 |
randomForests | 0.85 (0.78, 0.91) | 0.78 (0.74, 0.83) | 0.81 (0.79, 0.83) | 0.87 (0.84, 0.90) | 0.94 (0.92, 0.95) | 0.85 | 0:02:06 | 15 |
FLOCK | 0.82 (0.77, 0.87) | 0.91 (0.89, 0.93) | 0.86 (0.76, 0.93) | 0.86 (0.82, 0.89) | 0.86 (0.77, 0.92) | 0.86 | 0:00:05 | 13 |
CDP | 0.78 (0.68, 0.87) | 0.95 (0.93, 0.97) | 0.75 (0.71, 0.78) | 0.86 (0.84, 0.88) | 0.83 (0.80, 0.86) | 0.83 | 0:00:15 | 11 |
Ensemble clustering | 0.91 | 0.94 | 0.95 | 0.92 | 0.94 | 0.93 | – | 26 |