Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Genome-wide profiling of human cap-independent translation-enhancing elements

Abstract

We report an in vitro selection strategy to identify RNA sequences that mediate cap-independent initiation of translation. This method entails mRNA display of trillions of genomic fragments, selection for initiation of translation and high-throughput deep sequencing. We identified >12,000 translation-enhancing elements (TEEs) in the human genome, generated a high-resolution map of human TEE-bearing regions (TBRs), and validated the function of a subset of sequences in vitro and in cultured cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro selection of RNA elements that mediate cap-independent translation.
Figure 2: Functional analysis of selected TEEs in human cells and in vitro.
Figure 3: Genomic landscape of human TEEs.

Similar content being viewed by others

References

  1. Sonenberg, N. & Hinnebusch, A.G. Cell 136, 731–745 (2009).

    Article  CAS  Google Scholar 

  2. Jackson, R.J., Hellen, C.U.T. & Pestova, T.V. Nat. Rev. Mol. Cell Biol. 10, 113–127 (2010).

    Article  Google Scholar 

  3. Shatsky, I.N., Dmitriev, S.E., Terenin, I.M. & Andreev, D.E. Mol. Cells 30, 285–293 (2010).

    Article  CAS  Google Scholar 

  4. Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O. & Sarnow, P. Proc. Natl. Acad. Sci. USA 96, 13118–13123 (1999).

    Article  CAS  Google Scholar 

  5. Spriggs, K.A., Stoneley, M., Bushell, M. & Willis, A.E. Biol. Cell 100, 27–38 (2008).

    Article  CAS  Google Scholar 

  6. Roberts, R.W. & Szostak, J.W. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  Google Scholar 

  7. Salehi-Ashtiani, K., Luptak, A., Litovchick, A. & Szostak, J.W. Science 313, 1788–1792 (2006).

    Article  CAS  Google Scholar 

  8. Korbel, J.O. et al. Science 318, 420–426 (2007).

    Article  CAS  Google Scholar 

  9. Kasowski, M. et al. Science 328, 232–235 (2010).

    Article  CAS  Google Scholar 

  10. Gilbert, W.V., Zhou, K.H., Butler, T.K. & Doudna, J.A. Science 317, 1224–1227 (2007).

    Article  CAS  Google Scholar 

  11. Baranick, B.T. et al. Proc. Natl. Acad. Sci. USA 105, 4733–4738 (2008).

    Article  CAS  Google Scholar 

  12. Moss, B. Science 252, 1662–1667 (1991).

    Article  CAS  Google Scholar 

  13. Van Eden, M.E., Byrd, M.P., Sherrill, K.W. & Lloyd, R.E. RNA 10, 720–730 (2004).

    Article  CAS  Google Scholar 

  14. Mitchell, S.F. et al. Mol. Cell 39, 950–962 (2010).

    Article  CAS  Google Scholar 

  15. Mokrejs, M. et al. Nucleic Acids Res. 38, D131–D136 (2010).

    Article  CAS  Google Scholar 

  16. Sakharkar, M.K., Chow, V.T. & Kangueane, P. In Silico Biol. 4, 387–393 (2004).

    CAS  PubMed  Google Scholar 

  17. Akey, J.M. Genome Res. 19, 711–722 (2009).

    Article  CAS  Google Scholar 

  18. Sabeti, P.C. et al. Science 312, 1614–1620 (2006).

    Article  CAS  Google Scholar 

  19. Traynelis, S.F. et al. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  20. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  21. Ji, H.K. et al. Nat. Biotechnol. 26, 1293–1300 (2008).

    Article  CAS  Google Scholar 

  22. Kin, T. & Ono, Y. Methods Biochem. Anal. 23, 2945–2946 (2007).

    CAS  Google Scholar 

  23. Thomas, P.D. et al. Genome Res. 13, 2129–2141 (2003).

    Article  CAS  Google Scholar 

  24. Auerbach, R.K. et al. Proc. Natl. Acad. Sci. USA 106, 1492–1493 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Szostak (Harvard Medical School) and J. Doudna (University of California–Berkeley) for providing the human genome library and luciferase vectors, respectively; N. Pakulis, M. Leon, J. Flores and K. Fenton for technical assistance; G. McInnes for initial bioinformatics analysis; and members of the Chaput laboratory for helpful discussions and comments on the manuscript. This work was supported by US National Institutes of Health to J.C.C. (Eureka Award; GM085530) and S.K. (HG002096-11).

Author information

Authors and Affiliations

Authors

Contributions

J.C.C. conceived the project. J.C.C., B.P.W., B.L.J., S.K. and L.L. designed the experiments. B.P.W., B.S., K.W., A.C.L., K.K. and N.B. performed the experiments. J.C.C., B.P.W., A.C.L., K.K., L.L., S.K. and M.S. analyzed the data. J.C.C. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to John C Chaput.

Ethics declarations

Competing interests

B.L.J., S.K. and J.C.C. are named inventors on a patent application (PCT/US11/44198) on the technology described in this manuscript.

Supplementary information

Combined PDF

Supplementary Figures 1–5 and Supplementary Tables 1–4 (PDF 2424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wellensiek, B., Larsen, A., Stephens, B. et al. Genome-wide profiling of human cap-independent translation-enhancing elements. Nat Methods 10, 747–750 (2013). https://doi.org/10.1038/nmeth.2522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmeth.2522

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research