Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro

Abstract

Cotranslational protein maturation is often studied in cell-free translation mixtures, using stalled ribosome–nascent chain complexes produced by translating truncated mRNA. This approach has two limitations: (i) it can be technically challenging, and (ii) it only works in vitro, where the concentrations of cellular components differ from concentrations in vivo. We have developed a method to produce stalled ribosomes bearing nascent chains of a specified length by using a 'stall sequence', derived from the Escherichia coli SecM protein, which interacts with residues in the ribosomal exit tunnel to stall SecM translation. When the stall sequence is expressed at the end of nascent chains, stable translation-arrested ribosome complexes accumulate in intact cells or cell-free extracts. SecM-directed stalling is efficient, with negligible effects on viability. This method is straightforward and suitable for producing stalled ribosome complexes in vivo, permitting study of the length-dependent maturation of nascent chains in the cellular milieu.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of stalled ribosome–nascent chain complexes using the SecM stall sequence.
Figure 2: Visualization of stalled, truncated tailspike and GFP nascent chains.
Figure 3: TβS nascent chains are ribosome-associated.
Figure 4: Stalled ribosome-nascent chain complexes detected by FlAsH binding.
Figure 5: Measurements of mAb 236 binding to stalled tailspike nascent chains and native tailspike trimer.

Similar content being viewed by others

References

  1. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  2. Berisio, R. et al. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Biol. 10, 366–370 (2003).

    Article  CAS  Google Scholar 

  3. Malkin, L.I. & Rich, A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26, 329–346 (1967).

    Article  CAS  Google Scholar 

  4. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  Google Scholar 

  5. Komar, A.A., Kommer, A., Krasheninnikov, I.A. & Spirin, A.S. Cotranslational folding of globin. J. Biol. Chem. 272, 10646–10651 (1997).

    Article  CAS  Google Scholar 

  6. Frydman, J., Erdjument-Bromage, H., Tempst, P. & Hartl, F.U. Cotranslational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat. Struct. Biol. 6, 697–705 (1999).

    Article  CAS  Google Scholar 

  7. Nicola, A.V., Chen, W. & Helenius, A. Cotranslational folding of an alphavirus capsid protein in the cytosol of living cells. Nat. Cell Biol. 1, 341–345 (1999).

    Article  CAS  Google Scholar 

  8. Clark, P.L. & King, J. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. J. Biol. Chem. 276, 25411–25420 (2001).

    Article  CAS  Google Scholar 

  9. Fedorov, A.N. & Baldwin, T.O. Process of biosynthetic protein folding determines the rapid formation of native structure. J. Mol. Biol. 294, 579–586 (1999).

    Article  CAS  Google Scholar 

  10. Clark, P.L. Protein folding in the cell: reshaping the folding funnel. Trends Biochem. Sci. 29, 527–534 (2004).

    Article  CAS  Google Scholar 

  11. Ghaemmaghami, S. & Oas, T.G. Quantitative protein stability measurement in vivo. Nat. Struct. Biol. 8, 879–882 (2001).

    Article  CAS  Google Scholar 

  12. Dedmon, M.M., Patel, C.N., Young, G.B. & Pielak, G.J. FlgM gains structure in living cells. Proc. Natl. Acad. Sci. USA 99, 12681–12684 (2002).

    Article  CAS  Google Scholar 

  13. Ignatova, Z. & Gierasch, L.M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. USA 101, 523–528 (2004).

    Article  CAS  Google Scholar 

  14. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

    Article  CAS  Google Scholar 

  15. Friguet, B., Djavadi-Ohaniance, L., King, J. & Goldberg, M.E. In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies. J. Biol. Chem. 269, 15945–15949 (1994).

    CAS  PubMed  Google Scholar 

  16. Friguet, B., Djavadi-Ohaniance, L., Haase-Pettingell, C.A., King, J. & Goldberg, M.E. Properties of monoclonal antibodies selected for probing the conformation of wild-type and mutant forms of the P22 tailspike endorhamnosidase. J. Biol. Chem. 265, 10347–10351 (1990).

    CAS  PubMed  Google Scholar 

  17. Jain, M., Evans, M.S., King, J. & Clark, P.L. Monoclonal antibody epitope mapping describes tailspike β-helix folding and aggregation intermediates. J. Biol. Chem. 280, 23032–23040 (2005).

    Article  CAS  Google Scholar 

  18. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  Google Scholar 

  19. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319 (1996).

    Article  CAS  Google Scholar 

  20. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  Google Scholar 

  21. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  22. Spedding, G. Isolation and analysis of ribosomes from prokaryotes, eukaryotes and organelles. in Ribosomes and Protein Synthesis (ed. Spedding, G.) 1–27 (Oxford University Press, New York, 1990).

    Google Scholar 

  23. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article  CAS  Google Scholar 

  24. Friguet, B., Chaffotte, A.F., Djavadi-Ohaniance, L. & Goldberg, M.E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77, 305–319 (1985).

    Article  CAS  Google Scholar 

  25. Friguet, B., Djavadi-Ohaniance, L. & Goldberg, M.E. Polypeptide-antibody binding mechanism: conformational adaptation investigated by equilibrium and kinetic analysis. Res. Immunol. 140, 355–376 (1989).

    Article  CAS  Google Scholar 

  26. Sunohara, T., Jojima, K., Tagami, H., Inada, T. & Aiba, H. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J. Biol. Chem. 279, 15368–15375 (2004).

    Article  CAS  Google Scholar 

  27. Fuchs, A., Seiderer, C. & Seckler, R. In vitro folding pathway of phage P22 tailspike protein. Biochemistry 30, 6598–6604 (1991).

    Article  CAS  Google Scholar 

  28. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J. & King, J. Global suppression of protein folding defects and inclusion body formation. Science 253, 54–58 (1991).

    Article  CAS  Google Scholar 

  29. King, J., Haase-Pettingell, C., Robinson, A.S., Speed, M. & Mitraki, A. Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J. 10, 57–66 (1996).

    Article  CAS  Google Scholar 

  30. Speed, M.A., Morshead, T., Wang, D.I. & King, J. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci. 6, 99–108 (1997).

    Article  CAS  Google Scholar 

  31. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  32. Steinbacher, S. et al. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Å, fully refined structure of the endorhamnosidase at 1.56 Å resolution, and the molecular basis of O-antigen recognition and cleavage. J. Mol. Biol. 267, 865–880 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Plasmid pNH21 was a generous gift of K. Ito. This project was supported by an award from the Clare Boothe Luce Program of the Luce Foundation and the University of Notre Dame. M.S.E. is the recipient of a University of Notre Dame Schmitt Predoctoral Fellowship. M.A.F. was supported by the Deutscher Akademischer Austauschdienst. We thank J. King and T.F. Clarke IV for helpful discussions, P. Huber for use of the gel imaging system, M. Finn for technical assistance, and K. Henderson and R. Nasser for assistance with synthesis of the FlAsH dye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L Clark.

Ethics declarations

Competing interests

The authors of the manuscript are named in a provisional patent that was filed covering the work described in this manuscript.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M., Ugrinov, K., Frese, MA. et al. Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro. Nat Methods 2, 757–762 (2005). https://doi.org/10.1038/nmeth790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmeth790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing