Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wall teichoic acids mediate increased virulence in Staphylococcus aureus

A Corrigendum to this article was published on 13 March 2017

Abstract

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are the cause of a severe pandemic consisting primarily of skin and soft tissue infections. The underlying pathomechanisms have not been fully understood and we report here a mechanism that plays an important role for the elevated virulence of CA-MRSA. Surprisingly, skin abscess induction in an animal model was correlated with the amount of a major cell wall component of S. aureus, termed wall teichoic acid (WTA). CA-MRSA exhibited increased cell-wall-associated WTA content (WTAhigh) and thus were more active in inducing abscess formation via a WTA-dependent and T-cell-mediated mechanism than S. aureus strains with a WTAlow phenotype. We show here that WTA is directly involved in S. aureus strain-specific virulence and provide insight into the underlying molecular mechanisms that could guide the development of novel anti-infective strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amounts of WTA in the cell wall fractions of S. aureus strains and transcriptional analysis by qRT–PCR.
Figure 2: Agr-dependent control of WTA content in the staphylococcal cell wall.
Figure 3: Rot controls tarH expression and WTA biosynthesis downstream of RNAIII.
Figure 4: MHC II-dependent cytokine secretion of WTA-stimulated T cells during skin abscess formation.
Figure 5: Induction of T-cell-dependent IFN-γ secretion and abscess formation by cell wall fractions.
Figure 6: Skin abscess formation with whole bacterial cells and model for WTA-mediated strain-specific virulence.

Similar content being viewed by others

References

  1. DeLeo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568 (2010).

    Article  Google Scholar 

  2. Stryjewski, M. E. & Chambers, H. F. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 46(Suppl. 5), S368–S377 (2008).

    Article  CAS  Google Scholar 

  3. Fridkin, S. K. et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med. 352, 1436–1444 (2005).

    Article  CAS  Google Scholar 

  4. Purcell, K. & Fergie, J. Epidemic of community-acquired methicillin-resistant Staphylococcus aureus infections: a 14-year study at Driscoll Children's Hospital. Arch. Pediatr. Adolesc. Med. 159, 980–985 (2005).

    Article  Google Scholar 

  5. Hulten, K. G. et al. Three-year surveillance of community onset health care-associated Staphylococcus aureus infections in children. Pediatr. Infect. Dis. J. 25, 349–353 (2006).

    Article  Google Scholar 

  6. Liu, C. et al. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004–2005. Clin. Infect. Dis. 46, 1637–1646 (2008).

    Article  CAS  Google Scholar 

  7. Mediavilla, J. R., Chen, L., Mathema, B. & Kreiswirth, B. N. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr. Opin. Microbiol. 15, 588–595 (2012).

    Article  Google Scholar 

  8. Macal, C. M. et al. Modeling the transmission of community-associated methicillin-resistant Staphylococcus aureus: a dynamic agent-based simulation. J. Transl. Med. 12, 124 (2014).

    Article  Google Scholar 

  9. Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355, 666–674 (2006).

    Article  CAS  Google Scholar 

  10. Baker, P., Cohen, B., Liu, J. & Larson, E . Incidence and risk factors for community-associated methicillin-resistant Staphylococcus aureus in New York City, 2006–2012. Epidemiol. Infect. 144, 1014–1017 (2016).

    Article  CAS  Google Scholar 

  11. Como-Sabetti, K. et al. Community-associated methicillin-resistant Staphylococcus aureus: trends in case and isolate characteristics from six years of prospective surveillance. Public Health Rep. 124, 427–435 (2009).

    Article  Google Scholar 

  12. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  Google Scholar 

  13. Rooijakkers, S. H., van Kessel, K. P. & van Strijp, J. A. Staphylococcal innate immune evasion. Trends Microbiol. 13, 596–601 (2005).

    Article  CAS  Google Scholar 

  14. Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010).

    Article  CAS  Google Scholar 

  15. Voyich, J. M. et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175, 3907–3919 (2005).

    Article  CAS  Google Scholar 

  16. Moran, G. J., Amii, R. N., Abrahamian, F. M. & Talan, D. A. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg. Infect. Dis. 11, 928–930 (2005).

    Article  Google Scholar 

  17. King, M. D. et al. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann. Intern. Med. 144, 309–317 (2006).

    Article  Google Scholar 

  18. Melles, D. C. et al. Panton–Valentine leukocidin genes in Staphylococcus aureus. Emerg. Infect. Dis. 12, 1174–1175 (2006).

    Article  Google Scholar 

  19. Voyich, J. M. et al. Is Panton–Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis. 194, 1761–1770 (2006).

    Article  CAS  Google Scholar 

  20. Bubeck Wardenburg, J., Bae, T., Otto, M., Deleo, F. R. & Schneewind, O. Poring over pores: α-hemolysin and Panton–Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 13, 1405–1406 (2007).

    Article  Google Scholar 

  21. Bubeck Wardenburg, J., Palazzolo-Ballance, A. M., Otto, M., Schneewind, O. & DeLeo, F. R. Panton–Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J. Infect. Dis. 198, 1166–1170 (2008).

    Article  Google Scholar 

  22. Otto, M. Community-associated MRSA: what makes them special? Int. J. Med. Microbiol. 303, 324–330 (2013).

    Article  Google Scholar 

  23. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    Article  CAS  Google Scholar 

  24. Kobayashi, S. D. et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J. Infect. Dis. 204, 937–941 (2011).

    Article  CAS  Google Scholar 

  25. Berube, B. J., Sampedro, G. R., Otto, M. & Bubeck Wardenburg, J. The psmα locus regulates production of Staphylococcus aureus alpha-toxin during infection. Infect Immun. 82, 3350–3358 (2014).

    Article  Google Scholar 

  26. Hanberger, H. et al. Increased mortality associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in the intensive care unit: results from the EPIC II study. Int. J. Antimicrob. Agents 38, 331–335 (2011).

    Article  CAS  Google Scholar 

  27. Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).

    Article  CAS  Google Scholar 

  28. Cheung, G. Y., Wang, R., Khan, B. A., Sturdevant, D. E. & Otto, M. Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect. Immun. 79, 1927–1935 (2011).

    Article  CAS  Google Scholar 

  29. Queck, S. Y. et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32, 150–158 (2008).

    Article  CAS  Google Scholar 

  30. Li, M. et al. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 5883–5888 (2009).

    Article  CAS  Google Scholar 

  31. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    Article  CAS  Google Scholar 

  32. Novick, R. P. et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12, 3967–3975 (1993).

    Article  CAS  Google Scholar 

  33. Bronesky, D. et al. Staphylococcus aureus RNAIII and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annu. Rev. Microbiol. 70, 299–316 (2016).

    Article  CAS  Google Scholar 

  34. Miller, L. G. et al. Clinical and epidemiologic characteristics cannot distinguish community-associated methicillin-resistant Staphylococcus aureus infection from methicillin-susceptible S. aureus infection: a prospective investigation. Clin. Infect. Dis. 44, 471–482 (2007).

    Article  CAS  Google Scholar 

  35. Diep, B. A. et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367, 731–739 (2006).

    Article  CAS  Google Scholar 

  36. Thurlow, L. R. et al. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13, 100–107 (2013).

    Article  CAS  Google Scholar 

  37. Weidenmaier, C. & Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 6, 276–287 (2008).

    Article  CAS  Google Scholar 

  38. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245 (2004).

    Article  CAS  Google Scholar 

  39. Baur, S. et al. A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog. 10, e1004089 (2014).

    Article  Google Scholar 

  40. Weidenmaier, C. et al. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect. Immun. 73, 8033–8038 (2005).

    Article  CAS  Google Scholar 

  41. Weidenmaier, C. et al. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J. Infect. Dis. 191, 1771–1777 (2005).

    Article  CAS  Google Scholar 

  42. Lehar, S. M. et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

    Article  CAS  Google Scholar 

  43. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  Google Scholar 

  44. Santa Maria, J. P. Jr et al. Compound–gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl Acad. Sci. USA 111, 12510–12515 (2014).

    Article  CAS  Google Scholar 

  45. Wang, H. et al. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem. Biol. 20, 272–284 (2013).

    Article  CAS  Google Scholar 

  46. Pasquina, L. W., Santa Maria, J. P. & Walker, S. Teichoic acid biosynthesis as an antibiotic target. Curr. Opin. Microbiol. 16, 531–537 (2013).

    Article  CAS  Google Scholar 

  47. Lee, S. H. et al. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci. Transl. Med. 8, 329ra332 (2016).

    Article  Google Scholar 

  48. Mann, P. A. et al. Chemical genetic analysis and functional characterization of staphylococcal wall teichoic acid 2-epimerases reveals unconventional antibiotic drug targets. PLoS Pathog. 12, e1005585 (2016).

    Article  Google Scholar 

  49. Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 686–723 (2003).

    Article  CAS  Google Scholar 

  50. Brown, S., Santa Maria, J. P. Jr & Walker, S. Wall teichoic acids of Gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).

    Article  CAS  Google Scholar 

  51. Weidenmaier, C., McLoughlin, R. M. & Lee, J. C. The zwitterionic cell wall teichoic acid of Staphylococcus aureus provokes skin abscesses in mice by a novel CD4+ T-cell-dependent mechanism. PLoS One 5, e13227 (2010).

    Article  Google Scholar 

  52. Lazarevic, V. & Karamata, D. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 16, 345–355 (1995).

    Article  CAS  Google Scholar 

  53. Schirner, K., Stone, L. K. & Walker, S. ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. ACS Chem. Biol. 6, 407–412 (2011).

    Article  CAS  Google Scholar 

  54. Bunce, C., Wheeler, L., Reed, G., Musser, J. & Barg, N. Murine model of cutaneous infection with Gram-positive cocci. Infect. Immun. 60, 2636–2640 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vuong, C., Gotz, F. & Otto, M. Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect. Immun. 68, 1048–1053 (2000).

    Article  CAS  Google Scholar 

  56. Novick, R. P. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48, 1429–1449 (2003).

    Article  CAS  Google Scholar 

  57. Killikelly, A. et al. Structure-based functional characterization of repressor of toxin (Rot). A central regulator of Staphylococcus aureus virulence. J. Bacteriol. 197, 188–200 (2015).

    Article  Google Scholar 

  58. Rajagopal, M. & Walker, S. Envelope structures of Gram-positive bacteria. Curr. Top. Microbiol. Immunol. http://dx.doi.org.10.1007/82_2015_5021 (2016).

  59. Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    Article  CAS  Google Scholar 

  60. Winstel, V. et al. Wall teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. mBio 6, e00632-15 (2015).

    Article  Google Scholar 

  61. Montgomery, C. P., Boyle-Vavra, S. & Daum, R. S. Importance of the global regulators Agr and SaeRS in the pathogenesis of CA-MRSA USA300 infection. PLoS One 5, e15177 (2010).

    Article  CAS  Google Scholar 

  62. Meredith, T. C., Swoboda, J. G. & Walker, S. Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J. Bacteriol. 190, 3046–3056 (2008).

    Article  CAS  Google Scholar 

  63. Lee, K., Campbell, J., Swoboda, J. G., Cuny, G. D. & Walker, S. Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorg. Med. Chem. Lett. 20, 1767–1770 (2010).

    Article  CAS  Google Scholar 

  64. Swoboda, J. G. et al. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem. Biol. 4, 875–883 (2009).

    Article  CAS  Google Scholar 

  65. Geisinger, E., Adhikari, R. P., Jin, R., Ross, H. F. & Novick, R. P. Inhibition of rot translation by RNAIII, a key feature of agr function. Mol. Microbiol. 61, 1038–1048 (2006).

    Article  CAS  Google Scholar 

  66. Boisset, S. et al. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev. 21, 1353–1366 (2007).

    Article  CAS  Google Scholar 

  67. Zhu, Y. et al. Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus. Acta Crystallogr. D 70, 2467–2476 (2014).

    Article  CAS  Google Scholar 

  68. Kolata, J. et al. The fall of a dogma? Unexpected high T cell memory response to S. aureus in humans. J. Infect. Dis. 212, 830–838 (2015).

    Article  CAS  Google Scholar 

  69. Cho, J. S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    Article  Google Scholar 

  70. Malachowa, N., Kobayashi, S. D., Sturdevant, D. E., Scott, D. P. & DeLeo, F. R. Insights into the Staphylococcus aureus–host interface: global changes in host and pathogen gene expression in a rabbit skin infection model. PLoS One 10, e0117713 (2015).

    Article  Google Scholar 

  71. Montgomery, C. P. et al. Protective immunity against recurrent Staphylococcus aureus skin infection requires antibody and interleukin-17A. Infect. Immun. 82, 2125–2134 (2014).

    Article  Google Scholar 

  72. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  73. Bertsche, U. et al. Increased cell wall teichoic acid production and d-alanylation are common phenotypes among daptomycin-resistant methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. PLoS One 8, e67398 (2013).

    Article  CAS  Google Scholar 

  74. Smith, R. L. & Gilkerson, E. Quantitation of glycosaminoglycan hexosamine using 3-methyl-2-benzothiazolone hydrazone hydrochloride. Anal. Biochem. 98, 478–480 (1979).

    Article  CAS  Google Scholar 

  75. Portoles, M., Kiser, K. B., Bhasin, N., Chan, K. H. & Lee, J. C. Staphylococcus aureus Cap5O has UDP-ManNAc dehydrogenase activity and is essential for capsule expression. Infect. Immun. 69, 917–923 (2001).

    Article  CAS  Google Scholar 

  76. Mullane, K. M., Kraemer, R. & Smith, B. Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J. Pharmacol. Methods 14, 157–167 (1985).

    Article  CAS  Google Scholar 

  77. van der Veen, B. S., de Winther, M. P. & Heeringa, P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid. Redox Signal. 11, 2899–2937 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank I. Autenrieth and A. Peschel for discussions and critical reading of the manuscript. This research was supported by grants from the German Research Foundation (SFB) to C.We. (SFB766 and TR34), C.Wo. (SFB766 and TR34) and B.M.B. (TR34). The funders had no role in the design of the experiments, in the collection, analysis and interpretation of the data, in writing the manuscript, or in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

S.W., C.Wo., J.K., B.M.B., J.S. and C.We. planned the experiments. S.W., J.S., N.W., D.Ke., L.K., J.B., T.G., V.W. and C.We. performed the experiments. C.Wo., J.K., B.M.B., V.W. and D.Kr. supplied materials and strains. S.W., J.S. and C.We. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christopher Weidenmaier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–17, Supplementary References. (PDF 2207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanner, S., Schade, J., Keinhörster, D. et al. Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nat Microbiol 2, 16257 (2017). https://doi.org/10.1038/nmicrobiol.2016.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.257

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology