Supplementary Figure 2: DHPG reduced surface GluR1 density in cultured hippocampal pyramidal neurons from WT mice but not in neurons from either Eif2s1S/A or Eif2s1A/A mice. | Nature Neuroscience

Supplementary Figure 2: DHPG reduced surface GluR1 density in cultured hippocampal pyramidal neurons from WT mice but not in neurons from either Eif2s1S/A or Eif2s1A/A mice.

From: Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α

Supplementary Figure 2

Surface GluR1 levels were detected as described in Methods. a-c) DHPG treatment (100mM, 5 min) reduced surface GluR1 density at 1 h post-treatment onset of cells from WT Eif2s1S/S (a) but not Eif2s1S/A (b) or Eif2s1A/A (c) mice. In contrast, synapsin-1 density was uniform among genotypes and treatment conditions. MAP2 immunostaining revealed that Eif2s1S/A and Eif2s1A/A cells displayed typical neuronal morphology in culture. Boxed areas indicate the dendritic segment shown in the expanded view immediately below the full-neuron, single-channel images. Merged images show combined data from the three individual channels. Scale bar indicates 20mm. d-e) Quantification of surface GluR1 (d) and synapsin-1 (e) density of DHPG-treated neurons normalized to vehicle-treated control neurons from the indicated genotype (n=51 for both Eif2s1S/S and Eif2s1S/A and n=34 for Eif2s1A/A; sGluR1, F(2,12)=19.3, p=0.00018; synapsin-1, F(2,12)=0.14, p=0.87). Statistical significance was assessed by a two-way ANOVA with Bonferroni correction for multiple comparisons. Results are displayed as mean ± SEM.

Back to article page