Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo

Abstract

The development and structural plasticity of dendritic arbors are governed by several factors, including synaptic activity, neurotrophins and other growth-regulating molecules. The signal transduction pathways leading to dendritic structural changes are unknown, but likely include cytoskeleton regulatory components. To test whether GTPases regulate dendritic arbor development, we collected time-lapse images of single optic tectal neurons in albino Xenopus tadpoles expressing dominant negative or constitutively active forms of Rac, Cdc42 or RhoA. Analysis of images collected at two-hour intervals over eight hours indicated that enhanced Rac activity selectively increased branch additions and retractions, as did Cdc42 to a lesser extent. Activation of endogenous RhoA decreased branch extension without affecting branch additions and retractions, whereas dominant-negative RhoA increased branch extension. Finally, we provide data suggesting that RhoA mediates the promotion of normal dendritic arbor development by NMDA receptor activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Rho GTPases and their effect on the actin cytoskeleton.
Figure 2: RhoA activity blocks dendritic arbor elaboration.
Figure 3: Rac activity promotes dendritic branch dynamics.
Figure 4: Rac and Cdc42 increase transient branches.
Figure 5: Rac and RhoA affect dendritic arbor complexity.
Figure 6: NMDA receptor-mediated arbor growth operates through RhoA.

Similar content being viewed by others

References

  1. Stuart, G., Spruston, N. & Hausser, M. Dendrites (Oxford Univ. Press, Oxford, 1999).

  2. Koester, S. E. & O'Leary, D. D. Development of projection neurons of the mammalian cerebral cortex. Prog. Brain Res. 102, 207–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, G.-Y & Cline, H. T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, G.-Y, Zou, D. J., Rajan, I. & Cline, H. T. Dendritic dynamics in vivo change during neuronal maturation. J. Neurosci. 19, 4472–4483 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rajan, I. & Cline, H. T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajan, I., Witte, S. & Cline, H. T. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J. Neurobiol. 38, 2089–2096 (1999).

    Article  Google Scholar 

  7. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Narumiya, S. The small GTPase Rho: cellular functions and signal transduction. J. Biochem. (Tokyo) 120, 215–228 (1996).

    Article  CAS  Google Scholar 

  9. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295– 2322 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Van Leeuwen, F. N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  11. Gebbink, M. F. et al. Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J. Cell Biol. 137, 1603–1613 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  13. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1132– 1138 (1996).

    Article  Google Scholar 

  14. Yamashita, T., Tucker, K. L. & Barde, Y.-A Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development 125, 453–461 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ruchhoeft, M. L. et al. The neuronal archicture of Xenopus retinal ganglion cells is sculpted by Rho-family GTPases in vivo. J. Neurosci. 19, 8454–8463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zipkin, I. D., Kindt, R. M. & Kenyon, C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883–894 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, T. et al. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron (in press).

  21. Wu, G.-Y, Zou, D.-J, Koothan, T. & Cline, H. T. Infection of frog neurons with vaccinia virus permits in vivo expression of foreign proteins . Neuron 14, 681–684 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801– 810 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. O'Rourke, N. A., Cline, H. T. & Fraser, S. E. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. Neuron 12, 921–934 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Witte, S., Stier, H. & Cline, H. T. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. J. Neurobiol. 31, 219–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, G.-Y, Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  26. Purpura, D. P. Dendritic differentiation in human cerebral cortex: normal and aberrant developmental patterns. Adv. Neurol. 12, 91– 134 (1975).

    CAS  PubMed  Google Scholar 

  27. Billuart, P. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392, 923– 926 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, H. J., Rojas, S. M., Oguni, A. & Kennedy, M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, J. H., Liao, D., Lau, L.-F & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ridley, A. J. et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401– 410 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Miskevich, F., Zhu, Y., Ranscht, B. & Sanes, J. R. Expression of multiple cadherins and catenins in the chick optic tectum. Mol. Cell Neurosci. 4, 240–255 (1998).

    Article  Google Scholar 

  33. McAllister, A. K., Lo, D. C. & Katz, L. C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791– 803 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Kuhn, T. B. et al. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J. Neurosci. 19, 1965– 1975 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin, Z. & Strittmatter, S. M. Rac1 mediates collapsin-1-induced growth cone collapse. J. Neurosci. 17, 6256 –6263 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuhn, T. B., Brown, M. D. & Bamburg, J. R. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine. J. Neurobiol. 37, 524– 540 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell Biol. 17, 1201–1211 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Bentley, D. & O'Connor, T. P. Cytoskeletal events in growth cone steering. Curr. Opin. Neurobiol. 4, 43–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fannon, A. M. & Colman, D. R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423– 434 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805– 809 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809– 812 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP . Nature 391, 93–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Obermeier, A. et al. PAK promotes morphological changes by acting upstream of Rac . EMBO J. 17, 4328–4339 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mackett, M., Smith, G. L. & Moss, B. DNA Cloning: A Practical Approach (IRL Press, Oxford, 1985).

  49. Cline, H. T. et al. in Imaging: A Laboratory Manual (eds. Yuste, R., Lanni, F. & Konnerth, A.) 13.1–13.12 (Cold Spring Harbor Laboratory Press, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank Wun Chey Sin for providing the EGFP-Cdc42N17 and EGFP-RhoN19 viruses, Kim Bronson for technical assistance and Neil Mahapatra for help with the Sholl analysis. Support for the work was provided by the NIH (H.T.C., L.V.A.) and the Eppley Foundation (H.T.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hollis T. Cline.

Supplementary information

Time-lapse movies of dendritic arbor dynamics in vivo in a control and RacV12 neuron generated from confocal images through the z axis of the neurons collected every 3 min. The dendritic arbor of the RacV12 neuron shows more branch extensions and retractions than the control neuron.

Requires quicktime plug-in, download quicktime now at http://www.apple.com/quicktime/

Cline movie 1 (QT 248 KB)

Dendritic growth in vivo of control Xenopus neurons.

Cline movie 2 (QT 396 KB)

Dendritic growth in vivo of neurons in RacV12 mutant Xenopus, which have a constitutively active form of the gene for a Rho GTPase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Van Aelst, L. & Cline, H. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci 3, 217–225 (2000). https://doi.org/10.1038/72920

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/72920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing