Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin

Abstract

With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Failure of graft integration and induction of reactive gliosis after retinal transplantation in wild-type mice.
Figure 2: Robust neural graft integration into the retina of adult GFAP−/−Vim−/− mice.
Figure 3: Morphological integration of EGFP neurons into the GCL of GFAP−/−Vim−/− mice.
Figure 4: Morphological integration of transplanted cells into the retinas of adult GFAP−/−Vim−/− mice.
Figure 5: Neuronal repopulation and integration in the retinas of wild-type (WT), GFAP−/−Vim−/− (GV), GFAP−/−(G), and Vim−/− (V) mice.
Figure 6: Morphology of reactive astrocytes, Müller glial cells and the ILM in the retinas of GFAP−/−Vim−/− mice.

Similar content being viewed by others

References

  1. Studer, L., Tabar, V. & McKay, R.D. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).

    Article  CAS  Google Scholar 

  2. Berson, E.L. & Jakobiec, F.A. Neural retinal cell transplantation: ideal versus reality. Ophthalmology 106, 445–446 (1999).

    Article  CAS  Google Scholar 

  3. Dunnett, S.B. Repair of the damaged brain. Neuropathol. Appl. Neurobiol. 25, 351–362 (1999).

    Article  CAS  Google Scholar 

  4. McDonald, J.W . et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    Article  CAS  Google Scholar 

  5. Svendsen, C.N., Bhattacharyya, A. & Tai, Y.T. Neurons from stem cells: preventing an identity crisis. Nat. Rev. Neurosci. 2, 831–834 (2001).

    Article  CAS  Google Scholar 

  6. Takahashi, M., Palmer, T.D., Takahashi, J. & Gage, F.H. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol. Cell Neurosci. 12, 340–348 (1998).

    Article  CAS  Google Scholar 

  7. Young, M.J., Ray, J., Whiteley, S.J., Klassen, H. & Gage, F.H. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol. Cell Neurosci. 16, 197–205 (2000).

    Article  CAS  Google Scholar 

  8. Lu, B. et al. Transplantation of EGF-responsive neurospheres from GFP transgenic mice into the eyes of rd mice. Brain Res. 943, 292–300 (2002).

    Article  CAS  Google Scholar 

  9. Gouras, P., Du, J., Kjeldbye, H., Yamamoto, S. & Zack, D.J. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest. Ophthalmol. Vis. Sci. 35, 3145–3153 (1994).

    CAS  PubMed  Google Scholar 

  10. Zhang, Y., Arner, K., Ehinger, B. & Perez, M.T. Limitation of anatomical integration between subretinal transplants and the host retina. Invest. Ophthalmol. Vis. Sci. 44, 324–331 (2003).

    Article  Google Scholar 

  11. Seiler, M. & Turner, J.E. The activities of host and graft glial cells following retinal transplantation into the lesioned adult rat eye: developmental expression of glial markers. Brain Res. 471, 111–122 (1988).

    Article  CAS  Google Scholar 

  12. Ghosh, F. & Wasselius, J. Muller cells in allogeneic adult rabbit retinal transplants. Glia 40, 78–84 (2002).

    Article  Google Scholar 

  13. Fawcett, J.W. & Asher, R.A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).

    Article  CAS  Google Scholar 

  14. Eliasson, C. et al. Intermediate filament protein partnership in astrocytes. J. Biol. Chem. 274, 23996–24006 (1999).

    Article  CAS  Google Scholar 

  15. Barker, R.A., Dunnett, S.B., Faissner, A. & Fawcett, J.W. The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp. Neurol. 141, 79–93 (1996).

    Article  CAS  Google Scholar 

  16. McGraw, J., Hiebert, G.W. & Steeves, J.D. Modulating astrogliosis after neurotrauma. J. Neurosci. Res. 63, 109–115 (2001).

    Article  CAS  Google Scholar 

  17. Pekny, M. Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. Prog. Brain Res. 132, 23–30 (2001).

    Article  CAS  Google Scholar 

  18. Pekny, M. et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145, 503–514 (1999).

    Article  CAS  Google Scholar 

  19. Pekny, M. et al. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J. 14, 1590–1598 (1995).

    Article  CAS  Google Scholar 

  20. Gomi, H. et al. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29–41 (1995).

    Article  CAS  Google Scholar 

  21. McCall, M.A. et al. Targeted deletion in astrocyte intermediate filament (GFAP) alters neuronal physiology. Proc. Natl. Acad. Sci. USA 93, 6361–6366 (1996).

    Article  CAS  Google Scholar 

  22. Colucci-Guyon, E. et al. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79, 679–694 (1994).

    Article  CAS  Google Scholar 

  23. Menet, V. et al. Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J. Neurosci. 21, 6147–6158 (2001).

    Article  CAS  Google Scholar 

  24. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  25. Smith-Thomas, L.C. et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell. Sci. 107, 1687–1695 (1994).

    CAS  PubMed  Google Scholar 

  26. McKeon, R.J., Schreiber, R.C., Rudge, J.S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

    Article  CAS  Google Scholar 

  27. Cepko, C.L., Austin, C.P., Yang, X., Alexiades, M. & Ezzeddine, D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589–595 (1996).

    Article  CAS  Google Scholar 

  28. Young, R.W. Cell differentiation in the retina of the mouse. Anat. Rec. 212, 199–205 (1985).

    Article  CAS  Google Scholar 

  29. Gan, L. et al. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 93, 3920–3925 (1996).

    Article  CAS  Google Scholar 

  30. Barnstable, C.J. & Drager, U.C. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 11, 847–855 (1984).

    Article  CAS  Google Scholar 

  31. Pekny, M. et al. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp. Cell Res. 239, 332–343 (1998).

    Article  CAS  Google Scholar 

  32. Van Hoffelen, S.J., Young, M.J., Shatos, M.A. & Sakaguchi, D.S. Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest. Ophthalmol. Vis. Sci. 44, 426–434 (2003).

    Article  Google Scholar 

  33. Nishida, A. et al. Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest. Ophthalmol. Vis. Sci. 41, 4268–4274 (2000).

    CAS  Google Scholar 

  34. Kurimoto, Y. et al. Transplantation of adult rat hippocampus-derived neural stem cells into retina injured by transient ischemia. Neurosci. Lett. 306, 57–60 (2001).

    Article  CAS  Google Scholar 

  35. Qiu, J., Cai, D. & Filbin, M.T. Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia 29, 166–174 (2000).

    Article  CAS  Google Scholar 

  36. Fournier, A.E. & Strittmatter, S.M. Repulsive factors and axon regeneration in the CNS. Curr. Opin. Neurobiol. 11, 89–94 (2001).

    Article  CAS  Google Scholar 

  37. Xu, K., Malouf, A.T., Messing, A. & Silver, J. Glial fibrillary acidic protein is necessary for mature astrocytes to react to beta-amyloid. Glia 25, 390–403 (1999).

    Article  CAS  Google Scholar 

  38. Menet, V., Gimenez, Y.R.M., Sandillon, F. & Privat, A. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia 31, 267–272 (2000).

    Article  CAS  Google Scholar 

  39. Wang, X., Messing, A. & David, S. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp. Neurol. 148, 568–576 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Pawlyk and T. Li for conducting mouse retinal ERGs, D.W. Pottle for confocal microscopy and M. Young and C.L. Barnstable for critical discussion. This work was supported by grants from the National Eye Institute (EY012983), the Lilly Foundation for Aging Research, the Juvenile Diabetes Research Foundation, the Massachusetts Lion's Eye Research Fund and the Minda de GunzBurg Research Center for Retinal Transplantation at the Schepens Eye Research Institute (to D.F.C.) and by grants from the Swedish Cancer Foundation, the Swedish Medical Research Council, the Swedish Society for Medicine, the Swedish Society for Medical Research, the King Gustaf V Foundation, Volvo Assar Gabrielsson Fond and the Swedish Stroke Foundation (to M.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milos Pekny or Dong Feng Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinouchi, R., Takeda, M., Yang, L. et al. Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci 6, 863–868 (2003). https://doi.org/10.1038/nn1088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nn1088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing