Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gating of auditory responses in the vocal control system of awake songbirds

Abstract

Nucleus HVc of the avian song system is a forebrain structure critical in song production, perception and learning. Here we show that most HVc neurons that respond to auditory stimuli under anesthesia show no responses to the same stimulus in the awake, unrestrained bird. This suppression of auditory responses in awake birds does not occur in the forebrain field L complex, which is one of the auditory input stages for HVc. Gating of auditory input at the junction between the auditory and vocal control system may be essential for regulating auditory feedback signals necessary for song learning and maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: State-dependence of song-selective neural responses in nucleus HVc.
Figure 2: Quantification of auditory responses in HVc.
Figure 3: Auditory responses in field L of awake birds.
Figure 4: Spontaneous recording of neural responses in HVc and Field L.

Similar content being viewed by others

References

  1. McCasland, J. S. Neuronal control of bird song production. J. Neurosci. 7, 23–39 (1987).

    Article  CAS  Google Scholar 

  2. Margoliash, D. Functional organization of forebrain pathways for song production and perception . J. Neurobiol. 33, 671– 693 (1997).

    Article  CAS  Google Scholar 

  3. Vu, E. T., Mazurek, M. E. & Kuo, Y.-C. Identification of a forebrain motor programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–6934 (1994).

    Article  CAS  Google Scholar 

  4. Yu, A. C. & Margoliash, D. Temporal hierarchical control of singing in birds. Science 273, 1871– 1875 (1996).

    Article  CAS  Google Scholar 

  5. Brenowitz, E. A. Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science 251, 303 –305 (1991).

    Article  CAS  Google Scholar 

  6. Nottebohm, F., Stokes, T. M. & Leonard, C. M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457– 486 (1976).

    Article  CAS  Google Scholar 

  7. Vicario, D. S. & Yohay, K. H. Song-selective auditory input to a forebrain vocal control nucleus in the zebra finch. J. Neurobiol. 24, 488–505 (1993).

    Article  CAS  Google Scholar 

  8. Doupe, A. J. & Konishi, M. Song-selective auditory circuits in the vocal control system of the zebra finch. Proc. Natl Acad. Sci. USA 88, 11339–11343 (1991).

    Article  CAS  Google Scholar 

  9. Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984).

    Article  CAS  Google Scholar 

  10. Doupe, A. J. A neural circuit specialized for vocal learning. Curr. Opin. Neurobiol. 3, 104–111 (1993).

    Article  CAS  Google Scholar 

  11. Margoliash, D. Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. J. Neurosci. 6, 1643–1661 (1986).

    Article  CAS  Google Scholar 

  12. Margoliash, D. & Fortune, E. S. Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc. J. Neurosci. 12, 4309–4326 (1992).

    Article  CAS  Google Scholar 

  13. Lewicki, M. S. Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain. J. Neurosci. 15, 5854 –5863 (1996).

    Article  Google Scholar 

  14. Lewicki, M. S. & Arthur, B. J. Hierarchical organization of auditory temporal context sensitivity. J. Neurosci. 16, 6987–6998 (1996).

    Article  CAS  Google Scholar 

  15. Fortune, E. S. & Margoliash, D. Parallel pathways and convergence onto HVc and adjacent neostriatum of adult male zebra finches (Taeniopygia guttata). J. Comp. Neurol. 360, 413–441 (1995).

    Article  CAS  Google Scholar 

  16. Vates, G. E., Broome, B. M., Mello, C. V. & Nottebohm, F. Auditory pathways of caudal telencephelon and their relation to the song system of adult male zebra finches (Taenopygia guttata). J. Comp. Neurol. 366, 613–642 (1996).

    Article  CAS  Google Scholar 

  17. Volman, S. F. Quantitative assessment of song-selectivity in the zebra finch "high vocal center". J. Comp. Physiol. A 178, 849– 862 (1995).

    Google Scholar 

  18. Metzner, W. An audio vocal interface in echolocating horseshoe bats. J. Neurosci. 13, 1899–1915 (1993).

    Article  CAS  Google Scholar 

  19. Mueller-Preuss, P. & Ploog,D. Inhibition of auditory cortical neurons during phonation. Brain Res. 215, 61–76 (1981).

    Article  Google Scholar 

  20. Capsius, B. & Leppelsack, H. J. Influence of urethane anesthesia on neural processing in the auditory cortex analogue of a songbird. Hearing Res. 96, 59–70 (1996).

    Article  CAS  Google Scholar 

  21. McCasland, J. S. & Konishi, M. Interactions between auditory and motor activities in an avian song control nucleus. Proc. Natl Acad. Sci. USA 78, 7815– 7819 (1981).

    Article  CAS  Google Scholar 

  22. Konishi, M. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. f. Tierpsychol. 22, 770– 783 (1965).

    CAS  Google Scholar 

  23. Price, P. H. Developmental determinants of structure in zebra finch song. J. Comp. Physiol. Psychol. 93, 260–277 (1979).

    Article  Google Scholar 

  24. Nordeen, K. W. & Nordeen, E. J. Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches . Behav. Neural Biol. 57, 58– 66 (1992).

    Article  CAS  Google Scholar 

  25. Okanoya, K. & Yamaguchi, A. Adult bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax. J. Neurobiol. 33, 343 –356 (1997).

    Article  CAS  Google Scholar 

  26. Woolley, S. M. N. & Rubel, E. W. Bengalese finches Lonchura striata domestica depend upon auditory feedback for the maintenance of adult song. J. Neurosci. 17, 6380– 6390 (1997).

    Article  CAS  Google Scholar 

  27. Reinke, H. & Wild, J. M. Identification and connections of inspiratory premotor neurons in songbirds and budgerigar. J. Comp. Neurol. 391, 147–163 (1998).

    Article  CAS  Google Scholar 

  28. Striedter, G. F. & Vu, E. T. Bilateral feedback projections to the forebrain in the premotor network for singing in zebra finches. J. Neurobiol. 34, 27– 40 (1998).

    Article  CAS  Google Scholar 

  29. Vates, G. E., Vicario, D. S. & Nottebohm, F. Reafferrent thalamo-"cortical" loops in the song system of oscine songbirds. J. Comp. Neurol. 380, 275–290 (1997).

    Article  CAS  Google Scholar 

  30. Maunsell, J. H. R. The brain's visual world: representation of visual targets in cerebral cortex . Science 270, 764–769 (1995).

    Article  CAS  Google Scholar 

  31. Newsome, W. T. Visual attention: spotlights, highlights and visual awareness. Curr. Biol. 6, 357–360 (1996).

    Article  CAS  Google Scholar 

  32. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl Acad. Sci. USA 93, 13494– 13499 (1996).

    Article  CAS  Google Scholar 

  33. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  34. Todt, D. & Hultsch, H. in Verhaltensbiologie. (eds G. Tembrock, R. Siegmund and M. Nichelmann) 22– 27 (G. Fisher, Jena, Germany, 1986).

  35. Waser, M. S. & Marler, P. Song learning in canaries. J. Comp. Physiol. Psychol. 91, 28– 35 (1976).

    Google Scholar 

  36. ten Cate, C. The influence of social relations on the development of species recognition in zebra finch males. Behaviour 91, 263– 285 (1984).

    Article  Google Scholar 

  37. Li, R. & Sakaguchi, H. Cholinergic innervation of song control nuclei by the ventral paleostriatum in the zebra finch: a double-labeling study with retrograde fluorescent tracers and choline acetyltransferase immunohistochemistry . Brain Res. 763, 239–246 (1997).

    Article  CAS  Google Scholar 

  38. Wenk, G. L. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol. Learn. Mem. 67, 85–95 (1997).

    Article  CAS  Google Scholar 

  39. Schmidt, M. F. & Perkel, D. J. Slow synaptic inhibition in nucleus HVc of the adult zebra finch. J. Neurosci. 18, 895–904 (1998).

    Article  CAS  Google Scholar 

  40. Margoliash, D. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J. Neurosci. 3, 1039 –1057 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Drew and A. Leonardo for technical help with some of the field L data, A. Leonardo for help with the acquisition and analysis software, M. Walsh and J. Pine for help with many of the electronic details of the chronic recording setup and M. Kohwi, G. Laurent, A. Leonardo and D. Perkel for comments on this manuscript. This research was supported by grants from National Institutes of Health (NRSA DC00125 and R03 DC03041 to M.F.S. and NH55984 to M. K. and M.F.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc F. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Konishi, M. Gating of auditory responses in the vocal control system of awake songbirds . Nat Neurosci 1, 513–518 (1998). https://doi.org/10.1038/2232

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/2232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing