Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term temporal integration in the anuran auditory system

Abstract

Analysis of the temporal structure of acoustic signals is important for the communication and survival of a variety of animals including humans. Recognition and discrimination of particular temporal patterns in sounds may involve integration of auditory information presented over hundreds of milliseconds or seconds. Here we show neural evidence for long-term integration in the anuran auditory system. The responses of one class of auditory neurons in the torus semicircularis (auditory midbrain) of frogs reflect the integration of information, gathered over approximately 45–150 ms, from a series of stimulus pulses, not stimulus energy. This integration process is fundamental to the selective responses of these neurons for particular call types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulse-integrating properties of a neuron in the torus or auditory midbrain of the frog H.regilla.
Figure 2: Energy independence of the pulse-integration process: pulse amplitude variations.
Figure 3: Energy independence of the pulse-integration process: variations of pulse duty cycle.

Similar content being viewed by others

References

  1. Olive, J. P., Greenwood, A. & Coleman, J. Acoustics of American English Speech. A Dynamic Approach(Springer, New York, 1993).

    Google Scholar 

  2. Moss, C. F. & Schnitzler, H. U. in Hearing by Bats (eds Popper, A. N. & Fay, R. R.) 87–145 (Springer, New York, 1995).

    Book  Google Scholar 

  3. Konishi, M. Birdsong: from behavior to neuron. Annu. Rev. Neurosci. 8, 125–170 (1985).

    Article  CAS  Google Scholar 

  4. Gerhardt, H. C. in The Evolution of the Amphibian Auditory System (eds Fritzsch, B. Ryan, M. J., Wilczynski, W., Hetherington, T. E. & Walkowiak, W.) 455–484 (Wiley, New York, 1988).

    Google Scholar 

  5. Huber, F. & Thorson, J. Cricket auditory communication. Sci. Amer. 253, 60–68 (1985).

    Article  Google Scholar 

  6. Bullock, T. H. Some principles in the brain analysis of important signals: mapping and stimulus recognition. Brain Behav. Evol. 28, 145– 156 (1986).

    Article  CAS  Google Scholar 

  7. Piheiro, A. D., Wu, M. & Jen, P. H. S. S. Encoding repetition rate and duration in the inferior colliculus of the big brown bat Eptesicus fuscus. J. Comp. Physiol. 169, 69–85 (1991).

    Google Scholar 

  8. Gooler, D. M. & Feng, A. S. Temporal coding in the frog midbrain: The influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J. Neurophysiol. 67, 1–22 (1992).

    Article  CAS  Google Scholar 

  9. Casseday, J. H., Ehrlich, D. & Covey, E. Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264, 847–850 (1994).

    Article  CAS  Google Scholar 

  10. Margoliash, D. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J. Neurosci. 3, 1039 –1057 (1983).

    Article  CAS  Google Scholar 

  11. Doupe, A. J. & Konishi, M. Song-selectivity in auditory circuits in the vocal control system of the zebra finch. Proc. Natl. Acad. Sci. USA 88, 11339–11343 (1991).

    Article  CAS  Google Scholar 

  12. Margoliash, D. & Fortune, E. S. Temporal and harmonic combination-sensitive neurons in the zebra finch. J. Neurosci. 12, 4309–4326 (1992).

    Article  CAS  Google Scholar 

  13. Lewicki, M. S. & Konishi, M. Mechanisms underlying the sensitivity of songbird forebrain neurons to temporal order. Proc. Natl. Acad. Sci. USA 92, 5582– 5586 (1995).

    Article  CAS  Google Scholar 

  14. Lewicki, M. S. Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain. J. Neurosci. 16, 5854 –5863 (1996).

    Article  CAS  Google Scholar 

  15. Doupe, A. J. Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. J. Neurosci. 17 , 1147–1167 (1997).

    Article  CAS  Google Scholar 

  16. Suga, N., O'Neill, W. E. & Manabe, T. Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. Science 200, 778–781 (1978).

    Article  CAS  Google Scholar 

  17. Suga, N. Principles of auditory information-processing derived from neuroethology. J. Exp. Biol. 146, 277–286 (1989).

    CAS  PubMed  Google Scholar 

  18. Brenowitz, E. A. & Rose, G. J. Behavioural plasticity mediates aggression in choruses of the Pacific treefrog. Anim. Behav. 47, 633–641 (1994).

    Article  Google Scholar 

  19. Rose, G. J. & Brenowitz, E. A. Plasticity of aggressive thresholds in Hyla regilla: discrete accommodation to encounter calls. Anim. Behav. 53 353–361(1997).

    Article  Google Scholar 

  20. Rose, G. & Capranica, R. R. Temporal selectivity in the central auditory system of the leopard frog. Science 219,1087–1089 (1983).

    Article  CAS  Google Scholar 

  21. Walkowiak, W. in Evolution of the Amphibian Auditory System (eds Fritszch, B. Wilczynski, W., Ryan, M. J. & Walkowiak, W.) 275–294 (Wiley, New York, 1988).

    Google Scholar 

  22. Rose G. J. & Capranica, R. R. Processing amplitude-modulated sounds by the auditory midbrain of two species of toads: matched temporal filters. J. Comp. Physiol. 154, 211– 219 (1984).

    Article  Google Scholar 

  23. Rose, G. J., Brenowitz, E. A. & Capranica, R. R. Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs. J. Comp. Physiol. 157, 763–769 (1985).

    Article  CAS  Google Scholar 

  24. Klump, G. M. & Gerhardt, H. C. Use of non-arbitrary acoustic criteria in mate choice by female gray tree frogs. Nature 326, 286–288 (1987).

    Article  Google Scholar 

  25. Viemeister, N. F. & Wakefield G. H. Temporal integration and multiple looks. J. Acoust. Soc. Am. 90, 858–865 (1991).

    Article  CAS  Google Scholar 

  26. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

  27. Lee, J. Amplitude modulation rate discrimination with sinusoidal carriers. J. Acoust. Soc. Am. 96, 2140–2147 (1994).

    Article  CAS  Google Scholar 

  28. Wollberg, Z. & Newman, J. D. Auditory cortex of squirrel monkey: response patterns of single cells to species-specific vocalizations. Science 175, 212–214 (1972).

    Article  CAS  Google Scholar 

  29. Wang, X., Merzenich, M. M., Beitel, R. & Schreiner, C. E. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J. Neurophysiol. 74, 2685–2706 (1995).

    Article  CAS  Google Scholar 

  30. Rauschecker, J. P. Processing of complex sounds in the auditory cortex of cat, monkey, and man . Acta Otolaryngol. Suppl. (Stockh.) 532, 34–38 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Organization for Hearing Research to G.J.R. We thank J. Canfield, E. Fortune and D. Carrier for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alder, T., Rose, G. Long-term temporal integration in the anuran auditory system. Nat Neurosci 1, 519–523 (1998). https://doi.org/10.1038/2237

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/2237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing