Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization

Abstract

Internalization of postsynaptic AMPA receptors depresses excitatory transmission, but the underlying dynamics and mechanisms of this process are unclear. Using immunofluorescence and surface biotinylation, we characterized and quantified basal and regulated AMPA receptor endocytosis in cultured hippocampal neurons, in response to synaptic activity, AMPA and insulin. AMPA-induced AMPA receptor internalization is mediated in part by secondary activation of voltage-dependent calcium channels, and in part by ligand binding independent of receptor activation. Although both require dynamin, insulin- and AMPA-induced AMPA receptor internalization are differentially dependent on protein phosphatases and sequence determinants within the cytoplasmic tails of GluR1 and GluR2 subunits. AMPA receptors internalized in response to AMPA stimulation enter a recycling endosome system, whereas those internalized in response to insulin diverge into a distinct compartment. Thus, the molecular mechanisms and intracellular sorting of AMPA receptors are diverse, and depend on the internalizing stimulus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid ligand-dependent endocytosis of AMPA receptors in cultured hippocampal neurons.
Figure 5: Differential inhibition of AMPA- and insulin-induced AMPA receptor endocytosis by inhibitors of protein phosphatases and L-type calcium channels.
Figure 2: Time course of basal, AMPA-, and insulin-induced internalization of AMPA receptors.
Figure 3: Continued AMPA receptor internalization during the plateau phase of internalized AMPA receptor signal.
Figure 4: AMPA- and insulin-induced AMPA receptor internalization through a clathrin-mediated, dynamin-dependent mechanism.
Figure 6: Differential sorting of internalized AMPA receptors after AMPA and insulin stimulation.
Figure 7: Differential subunit and sequence requirements for AMPA- and insulin-induced AMPA receptor endocytosis.

Similar content being viewed by others

References

  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  Google Scholar 

  2. Turrigiano, G. G. AMPA receptors unbound: membrane cycling and synaptic plasticity. Neuron 26, 5–8 (2000).

    Article  CAS  Google Scholar 

  3. Man, Y. H. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  Google Scholar 

  4. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  Google Scholar 

  5. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  6. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  Google Scholar 

  7. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  Google Scholar 

  8. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  9. Lissin, D. V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    Article  CAS  Google Scholar 

  10. Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci. 2, 37–43 (1999).

    Article  CAS  Google Scholar 

  11. Mammen, A. L., Huganir, R. L. & O'Brien, R. J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  Google Scholar 

  12. O'Brien, R. J. et al. The development of excitatory synapses in cultured spinal neurons. J. Neurosci. 17, 7339–7350 (1997).

    Article  CAS  Google Scholar 

  13. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  14. O'Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  15. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Article  CAS  Google Scholar 

  16. Lledo, P.-M., Zhang, X., Südhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  Google Scholar 

  17. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  Google Scholar 

  18. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24, 389–399 (1999).

    Article  CAS  Google Scholar 

  19. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

    Article  CAS  Google Scholar 

  20. Srivastava, S. et al. Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21, 581–591 (1998).

    Article  CAS  Google Scholar 

  21. Xia, J., Zhang, X., Staudinger, J. & Huganir, R. L. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22, 179–187 (1999).

    Article  CAS  Google Scholar 

  22. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

    Article  CAS  Google Scholar 

  23. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21, 99–110 (1998).

    Article  CAS  Google Scholar 

  24. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393–400 (1998).

    Article  CAS  Google Scholar 

  25. Wyszynski, M. et al. Association of AMPA receptors with a subset of glutamate receptor-interacting protein in vivo. J. Neurosci. 19, 6528–6537 (1999).

    Article  CAS  Google Scholar 

  26. Leonard, A. S., Davare, M. A., Horne, M. C., Garner, C. C. & Hell, J. W. SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J. Biol. Chem. 273, 19518–19524 (1998).

    Article  CAS  Google Scholar 

  27. Li, P. et al. AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses. Nat. Neurosci. 2, 972–977 (1999).

    Article  CAS  Google Scholar 

  28. Matsuda, S., Mikawa, S. & Hirai, H. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73, 1765–1768 (1999).

    Article  CAS  Google Scholar 

  29. Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N. & Rosenthal, N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400, 581–585 (1999).

    Article  CAS  Google Scholar 

  30. Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400, 576–581 (1999).

    Article  CAS  Google Scholar 

  31. Lai, M. M. et al. The calcineurin-dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis. J. Biol. Chem. 274, 25963–25966 (1999).

    Article  CAS  Google Scholar 

  32. Advani, R. J. et al. Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J. Biol. Chem. 273, 10317–10324 (1998).

    Article  CAS  Google Scholar 

  33. Prekeris, R., Klumperman, J., Chen, Y. A. & Scheller, R. H. Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell. Biol. 143, 957–971 (1998).

    Article  CAS  Google Scholar 

  34. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  Google Scholar 

  35. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  Google Scholar 

  36. Gaullier, J. M., Ronning, E., Gillooly, D. J. & Stenmark, H. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3- phosphate and early endosomes. Role of conserved residues. J. Biol. Chem. 275, 24595–24600 (2000).

    Article  CAS  Google Scholar 

  37. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  Google Scholar 

  38. Yamashiro, D. J., Tycko, B., Fluss, S. R. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).

    Article  CAS  Google Scholar 

  39. Mayor, S., Presley, J. F. & Maxfield, F. R. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell. Biol. 121, 1257–1269 (1993).

    Article  CAS  Google Scholar 

  40. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell. Dev. Biol. 12, 575–625 (1996).

    Article  CAS  Google Scholar 

  41. Willins, D. L. et al. Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 91, 599–606 (1999).

    Article  CAS  Google Scholar 

  42. Merlin, L. & Wong, R. Synaptic modifications accompanying epileptogenesis in vitro: long-term depression of GABA-mediated inhibition. Brain Res. 627, 330–340 (1993).

    Article  CAS  Google Scholar 

  43. Kameyama, K., Lee, H. K., Bear, M. F. & Huganir, R. L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163–1175 (1998).

    Article  CAS  Google Scholar 

  44. Lee, H. K., Kameyama, K., Huganir, R. L. & Bear, M. F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21, 1151–1162 (1998).

    Article  CAS  Google Scholar 

  45. Lee, H.-K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  46. Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).

    Article  CAS  Google Scholar 

  47. Beattie, E. C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci. 3, AAA–BBB (2000).

    Article  Google Scholar 

  48. Kirchhausen, T., Bonifacino, J. S. & Riezman, H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell. Biol. 9, 488–495 (1997).

    Article  CAS  Google Scholar 

  49. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401, 286–290 (1999).

    Article  CAS  Google Scholar 

  50. Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.B. Vallee (Worcester Institute, Shrewsbury, Massachusetts) for dynamin I cDNAs, R. Scheller and R. Prekeris (Stanford University School of Medicine, Stanford, California) for syntaxin 13 antibodies, and R. Huganir (Johns Hopkins University, Baltimore, Maryland) for GluR1 antibodies. M.S. is Assistant Investigator of the Howard Hughes Medical Institute. Y.T.W. is a Research Scholar of the Heart and Stroke Foundation of Canada. Supported by grants from US National Institute of Health (NS35050) to M.S. and Heart and Stroke Foundation of Ontario (NA-3762), the Medical Research Council of Canada, and the EJLB Foundation to Y.T.W. S.H.L. was supported in part by a postdoctoral fellowship from KOSEF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Ju, W., Foster, K. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat Neurosci 3, 1282–1290 (2000). https://doi.org/10.1038/81814

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/81814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing