Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+δ

Abstract

A key question in condensed-matter physics is to understand how high-temperature superconductivity emerges on adding mobile charged carriers to an antiferromagnetic Mott insulator. We address this question using angle-resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the Mott insulator and the d-wave superconductor in Bi2Sr2CaCu2O8+δ. Despite a temperature-dependent resistivity characteristic of an insulator, the excitations in this intermediate state have a highly anisotropic energy gap that vanishes at four points in momentum space. This nodal-liquid state has the same gap structure as that of the d-wave superconductor but no sharp quasiparticle peaks. We observe a smooth evolution of the excitation spectrum, along with the appearance of coherent quasiparticles, as one goes through the insulator-to-superconductor transition as a function of doping. Our results suggest that high-temperature superconductivity emerges when quantum phase coherence is established in a non-superconducting nodal liquid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data for insulating samples.
Figure 2: Spectral function versus doping.
Figure 3: The spectral gap as a function of doping and angle around the Fermi surface.

Similar content being viewed by others

References

  1. Kastner, M. A. & Birgenau, R. J. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897–928 (1998).

    Article  ADS  Google Scholar 

  2. Tsuei, C. C. et al. Robust d x 2 − y 2 pairing symmetry in hole-doped cuprate superconductors. Phys. Rev. Lett. 93, 187004 (2004).

    Article  ADS  Google Scholar 

  3. Konstantinovic, Z., Li, Z. Z. & Raffy, H. Normal state transport properties of single- and double-layered Bi2Sr2Can−1CunOy thin films and the pseudogap effect. Physica C 341–348, 859–862 (2000).

    Article  ADS  Google Scholar 

  4. Oh, S., Crane, T. A., Van Harlingen, D. J. & Eckstein, J. N. Doping controlled superconductor-insulator transition in Bi 2 Sr 2 x La x CaCuO 8 − δ . Phys. Rev. Lett. 96, 107003 (2006).

    Article  ADS  Google Scholar 

  5. Matei, I., Li, Z. Z. & Raffy, H. Observation of the superconducting-insulating transition in a BiSr(La)CuO thin film tuned by varying the oxygen content. J. Phys.: Conf. Ser. 150, 052154 (2009).

    Google Scholar 

  6. Campuzano, J. C. et al. Electronic spectra and their relation to the (π, π) collective mode in high-Tc superconductors. Phys. Rev. Lett. 83, 3709–3712 (1999).

    Article  ADS  Google Scholar 

  7. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  8. Kaminski, A. et al. Identifying the background signal in angle-resolved photoemission spectra of high-temperature cuprate superconductors. Phys. Rev. B 69, 212509 (2004).

    Article  ADS  Google Scholar 

  9. Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys. 2, 447–451 (2006).

    Article  ADS  Google Scholar 

  10. Doiron-Leyraud, N. et al. Onset of a Boson mode at the superconducting critical point of underdoped YBa2Cu3Oy . Phys. Rev. Lett. 97, 207001 (2006).

    Article  ADS  Google Scholar 

  11. Huefner, S., Hossain, M. A., Damascelli, A. & Sawatzky, G. A. Two gaps make a high-temperature superconductor? Rep. Prog. Phys. 71, 062501 (2008).

    Article  ADS  Google Scholar 

  12. Mesot, J. et al. Superconducting gap anisotropy and quasiparticle interactions: A doping dependent photoemission study. Phys. Rev. Lett. 83, 840–843 (1999).

    Article  ADS  Google Scholar 

  13. Tanaka, K. et al. Distinct Fermi-momentum–dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

    Article  ADS  Google Scholar 

  14. Ma, J.-H. et al. Coexistence of competing orders with two energy gaps in real and momentum space in the high temperature superconductor Bi2Sr2−xLaxCuO6+δ . Phys. Rev. Lett. 101, 207002 (2008).

    Article  ADS  Google Scholar 

  15. He, R.-H. et al. Energy gaps in the failed high-Tc superconductor La1.875Ba0.125CuO4 . Nature Phys. 5, 119–123 (2009).

    Article  ADS  Google Scholar 

  16. Pushp, A. et al. Extending universal nodal excitations optimizes superconductivity in Bi2Sr2CaCu2O8+δ . Science 324, 1689–1693 (2009).

    Article  ADS  Google Scholar 

  17. Lee, J. et al. Spectroscopic fingerprint of phase incoherent superconductivity in the pseudogap state of underdoped Bi2Sr2CaCu2O8+δ . Science 325, 1099–1103 (2009).

    Article  ADS  Google Scholar 

  18. Sutherland, M. et al. Thermal conductivity across the phase diagram of cuprates: Low-energy quasiparticles and doping dependence of the superconducting gap. Phys. Rev. B 67, 174520 (2003).

    Article  ADS  Google Scholar 

  19. Shi, M. et al. Coherent d-wave superconducting gap in underdoped La2−xSrxCuO4 by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 047002 (2008).

    Article  ADS  Google Scholar 

  20. Valla, T. et al. The ground state of the pseudogap in cuprate superconductors. Science 314, 1914–1916 (2006).

    Article  ADS  Google Scholar 

  21. Meng, J. et al. Monotonic d-wave superconducting gap of the optimally doped Bi2Sr1.6La0.4CuO6 superconductor by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 79, 024514 (2009).

    Article  ADS  Google Scholar 

  22. Wei, J. et al. Superconducting coherence peak in the electronic excitations of a single-layer Bi2Sr1.6La0.4CuO6+δ cuprate superconductor. Phys. Rev. Lett. 101, 097005 (2008).

    Article  ADS  Google Scholar 

  23. Meng, J. et al. Direct observation of Fermi pocket in high temperature cuprate superconductors. Preprint at <http://arxiv.org/abs/0906.2682> (2009).

  24. Hetel, I., Lemberger, T. R. & Randeria, M. Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin copper oxide films. Nature Phys. 3, 700–702 (2007).

    Article  ADS  Google Scholar 

  25. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-Tc superconductors. Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  26. Li, L., Chechelsky, J. G., Komiya, S., Ando, Y. & Ong, N. P. Low-temperature vortex liquid in La2−xSrxCuO4 . Nature Phys. 3, 311–314 (2007).

    Article  ADS  Google Scholar 

  27. Shen, K. M. et al. Fully gapped single-particle excitations in lightly doped cuprates. Phys. Rev. B 69, 054503 (2004).

    Article  ADS  Google Scholar 

  28. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: The ‘plain vanilla’ version of RVB. J. Phys. Condens. Mater. 16, R755–R799 (2004).

    Article  Google Scholar 

  29. Balents, L., Fisher, M. P. A. & Nayak, C. Nodal liquid theory of the pseudo-gap phase of high-Tc superconductors. Int. J. Mod. Phys. B 12, 1033–1068 (1998).

    Article  ADS  Google Scholar 

  30. Tesanovic, Z. d-wave duality and its reflections in high-temperature superconductors. Nature Phys. 4, 408–414 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work supported by the US National Science Foundation under grant DMR-0606255 (J.C.C.), NSF-DMR 0706203 (M.R.), and the US Department of Energy, Office of Science, under contract Nos DE-AC02-06CH11357 and DE-AC02-98CH10886. The Synchrotron Radiation Center, University of Wisconsin-Madison, is supported by the National Science Foundation under Award No. DMR-0537588.

Author information

Authors and Affiliations

Contributions

Project planning: J.C.C.; sample preparation: H.R., Z.Z.L., K.K., D.G.H., Z.J.X., J.S.W., G.G. and C.T.L.; ARPES experiments: U.C., M.S., D.A., J.Z., A.K. and S.R.; resistivity measurements: H.R. and Z.Z.L.; susceptibility measurements: H.C.; data analysis: U.C., M.S., D.A., A.K., M.R.N. and J.C.C.; manuscript preparation: U.C., M.R.N., M.R. and J.C.C.

Corresponding author

Correspondence to J. C. Campuzano.

Supplementary information

Supplementary Information

Supplementary Information (PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, U., Shi, M., Ai, D. et al. Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+δ. Nature Phys 6, 99–103 (2010). https://doi.org/10.1038/nphys1456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing