Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of column density in the formation of stars and black holes

Abstract

The stellar mass in disc galaxies scales approximately with the fourth power of the rotation velocity, and the masses of the central black holes in galactic nuclei scale approximately with the fourth power of the bulge velocity dispersion. It is shown here that these relations can be accounted for if, in a forming galaxy with an isothermal mass distribution, gas with a column density above about 8 M pc−2 goes into stars, whereas gas with a column density above about 2 g cm−2 (104M pc−2) goes into a central black hole. The lower critical value is close to the column density of about 10 M pc−2 at which atomic gas becomes molecular, and the upper value agrees approximately with the column density of about 1 g cm−2 at which the gas becomes optically thick to its cooling radiation. These results are plausible because molecule formation is evidently necessary for star formation, and because the onset of a high optical depth in a galactic nucleus may suppress continuing star formation and favour the growth of a central black hole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Larson, R. B. Angular momentum and the formation of stars and black holes. Rep. Prog. Phys. (in the press); preprint at <http://arxiv.org/abs/0901.4325> (2009).

  2. Tully, R. B. & Fisher, J. R. A new method of determining distances to galaxies. Astron. Astrophys. 54, 661–673 (1977).

    ADS  Google Scholar 

  3. Kassin, S. A. et al. The stellar mass Tully–Fisher relation to z=1.2 from AEGIS. Astrophys. J. 660, L35–L38 (2007).

    Article  ADS  Google Scholar 

  4. Williams, M. J., Bureau, M. & Cappellari, M. in Galaxy Evolution: Emerging Insights and Future Challenges (eds Jogee, S., Hao, L., Blanc, G. & Marinova, I.) (Astron. Soc. Pacific, 2009) (in the press); preprint at <http://arxiv.org/abs/0902.1500> (2009).

    Google Scholar 

  5. Kormendy, J. & Richstone, D. Inward bound—the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581–624 (1995).

    Article  ADS  Google Scholar 

  6. Ferrarese, L. et al. A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys. J. 644, L21–L24 (2006).

    Article  ADS  Google Scholar 

  7. Gültekin, K. et al. The Mσ and ML relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698, 198–221 (2009).

    Article  ADS  Google Scholar 

  8. Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  9. Downes, D. & Solomon, P. M. Rotating nuclear rings and extreme starbursts in ultraluminous galaxies. Astrophys. J. 507, 615–654 (1998).

    Article  ADS  Google Scholar 

  10. Krumholz, M. R., McKee, C. F. & Tumlinson, J. The atomic-to-molecular transition in galaxies. II: HI and H2 column densities. Astrophys. J. 693, 216–235 (2009).

    Article  ADS  Google Scholar 

  11. Martin, C. L. & Kennicutt, R. C. Star formation thresholds in galactic disks. Astrophys. J. 555, 301–321 (2001).

    Article  ADS  Google Scholar 

  12. Schaye, J. Star formation thresholds and galaxy edges: Why and where. Astrophys. J. 609, 667–682 (2004).

    Article  ADS  Google Scholar 

  13. Robertson, B. E. & Kravtsov, A. V. Molecular hydrogen and global star formation relations in galaxies. Astrophys. J. 680, 1083–1111 (2008).

    Article  ADS  Google Scholar 

  14. Shlosman, I. & Begelman, M. C. Evolution of self-gravitating accretion disks in active galactic nuclei. Astrophys. J. 341, 685–691 (1989).

    Article  ADS  Google Scholar 

  15. Goodman, J. Self-gravity and quasi-stellar object disks. Mon. Not. R. Astron. Soc. 339, 937–948 (2003).

    Article  ADS  Google Scholar 

  16. Tan, J. C. & Blackman, E. G. Star-forming accretion flows and the low-luminosity nuclei of giant elliptical galaxies. Mon. Not. R. Astron. Soc. 362, 983–994 (2005).

    Article  ADS  Google Scholar 

  17. Larson, R. B. The physics of star formation. Rep. Prog. Phys. 66, 1651–1697 (2003).

    Article  ADS  Google Scholar 

  18. Morris, M. & Serabyn, E. The galactic center environment. Annu. Rev. Astron. Astrophys. 34, 645–701 (1996).

    Article  ADS  Google Scholar 

  19. Solomon, P. M., Downes, D., Radford, S. J. E. & Barrett, J. W. The molecular interstellar medium in ultraluminous infrared galaxies. Astrophys. J. 478, 144–161 (1997).

    Article  ADS  Google Scholar 

  20. Semenov, D., Henning, Th., Helling, Ch., Ilgner, M. & Sedlmayr, E. Rosseland and Planck mean opacities for protoplanetary disks. Astron. Astrophys. 410, 611–621 (2003).

    Article  ADS  Google Scholar 

  21. Larson, R. B. Thermal physics, cloud geometry and the stellar initial mass function. Mon. Not. R. Astron. Soc. 359, 211–222 (2005).

    Article  ADS  Google Scholar 

  22. Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y. & Mac Low, M.-M. The stellar mass spectrum from non-isothermal gravoturbulent fragmentation. Astron. Astrophys. 435, 611–623 (2005).

    Article  ADS  Google Scholar 

  23. Li, Y., Klessen, R. S. & Mac Low, M.-M. The formation of stellar clusters in turbulent molecular clouds: Effects of the equation of state. Astrophys. J. 592, 975–985 (2003).

    Article  ADS  Google Scholar 

  24. Bonnell, I. A. & Rice, W. K. M. Star formation around supermassive black holes. Science 231, 1060–1062 (2008).

    Article  ADS  Google Scholar 

  25. Bartko, H. et al. An extremely top-heavy IMF in the Galactic Center stellar disks. Astrophys. J. (in the press); preprint at <http://arxiv.org/abs/0908.2177> (2009).

  26. Krumholz, M. R. & McKee, C. F. A minimum column density of 1 g cm−2 for massive star formation. Nature 451, 1082–1084 (2008).

    Article  ADS  Google Scholar 

  27. Thompson, T. A., Quataert, E. & Murray, N. Radiation pressure-supported starburst disks and active galactic nucleus fueling. Astrophys. J. 630, 167–185 (2005).

    Article  ADS  Google Scholar 

  28. Larson, R. B. in The Formation and Evolution of Planetary Systems (eds Weaver, H. A. & Danly, L.) 31–54 (Cambridge Univ. Press, 1989).

    Google Scholar 

  29. Larson, R. B. Non-linear acoustic waves in discs. Mon. Not. R. Astron. Soc. 243, 588–592 (1990).

    ADS  Google Scholar 

  30. Hopkins, P. F., Murray, N., Quataert, E. & Thompson, T. A. A maximum stellar surface density in dense stellar systems. Mon. Not. R. Astr. Soc. (in the press); preprint at <http://arxiv.org/abs/0908.4088> (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Larson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, R. Role of column density in the formation of stars and black holes. Nature Phys 6, 96–98 (2010). https://doi.org/10.1038/nphys1484

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing