Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetically driven superconductivity in CeCu2Si2

Abstract

The origin of unconventional superconductivity, including high-temperature and heavy-fermion superconductivity, is still a matter of controversy. Spin excitations instead of phonons are thought to be responsible for the formation of Cooper pairs. Using inelastic neutron scattering, we present the first in-depth study of the magnetic excitation spectrum in momentum and energy space in the superconducting and the normal states of CeCu2Si2. A clear spin excitation gap is observed in the superconducting state. We determine a lowering of the magnetic exchange energy in the superconducting state, in an amount considerably larger than the superconducting condensation energy. Our findings identify the antiferromagnetic excitations as the main driving force for superconducting pairing in this prototypical heavy-fermion compound located near an antiferromagnetic quantum critical point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic phase diagram around the QCP, crystal structure and nearly isotropic spin fluctuations of CeCu2Si2.
Figure 2: Inelastic neutron scattering spectra in the normal and superconducting states of CeCu2Si2.
Figure 3: Magnetic response, relaxation rate and spin gap at the AF wave vector of CeCu2Si2.
Figure 4: Dispersion of the magnetic response in superconducting CeCu2Si2.
Figure 5: Schematic plot of the imaginary part of the dynamic spin susceptibility Imχ(QAF,ω) in the normal and superconducting states.

Similar content being viewed by others

References

  1. Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2 . Phys. Rev. Lett. 43, 1892–1896 (1979).

    Article  ADS  Google Scholar 

  2. Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

    Article  ADS  Google Scholar 

  3. Scalapino, D. J., Loh, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    Article  ADS  Google Scholar 

  4. Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).

    Article  ADS  Google Scholar 

  5. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  Google Scholar 

  6. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nature Phys. 4, 186–197 (2008).

    Article  ADS  Google Scholar 

  7. Steglich, F. et al. More is Different—Fifty Years of Condensed Matter Physics 191–210 (Princeton Univ. Press, 2001).

    Google Scholar 

  8. Gegenwart, P. et al. Breakup of heavy fermions on the brink of ‘Phase A’ in CeCu2Si2 . Phys. Rev. Lett. 81, 1501–1504 (1998).

    Article  ADS  Google Scholar 

  9. Yuan, H. Q. et al. Observation of two distinct superconducting phases in CeCu2Si2 . Science 302, 2104–2107 (2003).

    Article  ADS  Google Scholar 

  10. Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280–4283 (1999).

    Article  ADS  Google Scholar 

  11. Stockert, O. et al. Nature of the A phase in CeCu2Si2 . Phys. Rev. Lett. 92, 136401 (2004).

    Article  ADS  Google Scholar 

  12. Holmes, A. T., Jaccard, D. & Miyake, K. Signatures of valence fluctuations in CeCu2Si2 under high pressure. Phys. Rev. B 69, 024508 (2004).

    Article  ADS  Google Scholar 

  13. Steglich, F. et al. New observations concerning magnetism and superconductivity in heavy-fermion metals. Physica B 223–224, 1–8 (1996).

    Article  ADS  Google Scholar 

  14. Stockert, O. et al. Magnetism and superconductivity in the heavy-fermion compound CeCu2Si2 studied by neutron scattering. Physica B 403, 973–976 (2008).

    Article  ADS  Google Scholar 

  15. Rauchschwalbe, U. et al. Critical fields of the ‘heavy-fermion’ superconductor CeCu2Si2 . Phys. Rev. Lett. 49, 1448–1451 (1982).

    Article  ADS  Google Scholar 

  16. Ohkawa, F. Cooper pairs of d x 2 − y 2 -symmetry in simple square lattices. J. Phys. Soc. Jpn 56, 2267–2270 (1987).

    Article  ADS  Google Scholar 

  17. Ishida, K. et al. Evolution from magnetism to unconventional superconductivity in a series of CexCu2Si2 compounds probed by Cu NQR. Phys. Rev. Lett. 82, 5353–5356 (1999).

    Article  ADS  Google Scholar 

  18. Fujiwara, K. et al. High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity. J. Phys. Soc. Jpn 77, 123711 (2008).

    Article  ADS  Google Scholar 

  19. Stockert, O. et al. Peculiarities of the antiferromagnetism in CeCu2Si2 . J. Phys.: Conf. Ser. 51, 211–218 (2006).

    ADS  Google Scholar 

  20. Scalapino, D. J. & White, S. R. Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism. Phys. Rev. B 58, 8222–8224 (1998).

    Article  ADS  Google Scholar 

  21. Leggett, A. Where is the energy saved in cuprate superconductivity? J. Phys. Chem. Solids 59, 1729–1732 (1998).

    Article  ADS  Google Scholar 

  22. Demler, E. & Zhang, S-C. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998).

    Article  ADS  Google Scholar 

  23. Woo, H. et al. Magnetic energy change available to superconducting condensation in optimally doped YBa2Cu3O6.95 . Nature Phys. 2, 600–604 (2006).

    Article  ADS  Google Scholar 

  24. Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nature Phys. 5, 217–221 (2009).

    Article  ADS  Google Scholar 

  25. Stock, C., Broholm, C., Hudis, J., Kang, H. J. & Petrovic, C. Spin resonance in the d-wave superconductor CeCoIn5 . Phys. Rev. Lett. 100, 087001 (2008).

    Article  ADS  Google Scholar 

  26. Haslinger, R. & Chubukov, A. V. Condensation energy in strongly coupled superconductors. Phys. Rev. B 68, 214508 (2003).

    Article  ADS  Google Scholar 

  27. Sidis, Y. et al. Magnetic resonant excitations in high-Tc superconductors. Phys. Status Solidi B 241, 1204–1210 (2004).

    Article  ADS  Google Scholar 

  28. Christianson, A. D. et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–932 (2008).

    Article  ADS  Google Scholar 

  29. Inosov, D. S. et al. Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2 . Nature Phys. 6, 178–181 (2010).

    Article  ADS  Google Scholar 

  30. Qiu, Y. et al. Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6 . Phys. Rev. Lett. 103, 067008 (2009).

    Article  ADS  Google Scholar 

  31. Lumsden, M. D. et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex . Nature Phys. 6, 182–186 (2010).

    Article  ADS  Google Scholar 

  32. Bernhoeft, N. et al. Enhancement of magnetic fluctuations on passing below Tc in the heavy fermion superconductor UPd2Al3 . Phys. Rev. Lett. 81, 4244–4247 (1998).

    Article  ADS  Google Scholar 

  33. Sato, N. K. et al. Strong coupling between local moments and superconducting ‘heavy’ electrons in UPd2Al3 . Nature 410, 340–343 (2001).

    Article  ADS  Google Scholar 

  34. Link, P., Jaccard, D., Geibel, C., Wassilew, C. & Steglich, F. The heavy-fermion superconductor UPd2Al3 at very high pressure. J. Phys. Condens. Matter 7, 373–378 (1995).

    Article  ADS  Google Scholar 

  35. Bernhoeft, N. et al. Magnetic fluctuations above and below Tc in the heavy fermion superconductor UPd2Al3 . Physica B 259–261, 614–620 (1999).

    Article  ADS  Google Scholar 

  36. Hiess, A. et al. Magnetization dynamics in the normal and superconducting phases of UPd2Al3: I. Surveys in reciprocal space using neutron inelastic scattering. J. Phys. Condens. Matter 18, R437–R451 (2006).

    Article  ADS  Google Scholar 

  37. Pailhès, S. et al. Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6.85 . Phys. Rev. Lett. 93, 167001 (2004).

    Article  ADS  Google Scholar 

  38. Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Dogan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    Article  ADS  Google Scholar 

  39. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

    Article  ADS  Google Scholar 

  40. Eremin, I., Zwicknagl, G., Thalmeier, P. & Fulde, P. Feedback spin resonance in superconducting CeCu2Si2 and CeCoIn5 . Phys. Rev. Lett. 101, 187001 (2008).

    Article  ADS  Google Scholar 

  41. Chu, J-H., Analytis, J. G., Kucharczyk, C. & Fisher, I. R. Determination of the phase diagram of the electron-doped superconductor Ba(Fe1−xCox)2As2 . Phys. Rev. B 79, 014506 (2009).

    Article  ADS  Google Scholar 

  42. Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in the hidden-order state of URu2Si2 . Nature Phys. 3, 96–99 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge helpful discussions with A. Chubukov, P. Coleman, T. Dahm, I. Eremin, B. Fåk, A. Hiess, D. Scalapino and P. Thalmeier. This work was supported by the Deutsche Forschungsgemeinschaft through Forschergruppe 960 ‘Quantum phase transitions’, as well as by the NSF Grant No. DMR-1006985 and the Robert A. Welch Foundation Grant No. C-1411.

Author information

Authors and Affiliations

Authors

Contributions

H.S.J. and C.G. synthesised the sample. O.S., J.A., E.F., M.L., K.S. and W.S. carried out the measurements. O.S., J.A. and S.K. analysed the data. S.K. and Q.S. carried out theoretical calculations. O.S., S.K., Q.S. and F.S. wrote the manuscript. O.S., S.K., Q.S. and F.S. planned and managed the project.

Corresponding author

Correspondence to O. Stockert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockert, O., Arndt, J., Faulhaber, E. et al. Magnetically driven superconductivity in CeCu2Si2. Nature Phys 7, 119–124 (2011). https://doi.org/10.1038/nphys1852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing