Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectral weight transfer in the integer quantum Hall effect and its consequences

Abstract

The energy spectrum of a two-dimensional electron gas placed in a transversal magnetic field B consists of quantized Landau levels. In the absence of disorder, the degeneracy of each Landau level is N=B A/φ0, where A is the area of the sample and φ0=h/e is the magnetic flux quantum. With disorder, localized states appear at the top and bottom of the broadened Landau level, whereas states in the centre of the Landau level (the critical region) remain delocalized. This single-electron theory adequately explains most aspects of the integer quantum Hall effect1. One unnoticed issue is the location of the new states that appear in the Landau level with increasing B. Here, we show that they appear predominantly inside the critical region. This situation leads to a ‘spectral ordering’ of the localized states, which explains the stripes observed in measurements of the local inverse compressibility2,3, of two-terminal conductance4 and of Hall and longitudinal resistances5 without the need to invoke interactions as done in previous work6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overlap between eigenstates with an extra magnetic flux quantum.
Figure 2: Lower half of a Hofstadter butterfly.
Figure 3: A schematic composite picture (computer-generated) of the stripes observed experimentally in refs 2, 3, 4, 5.

Similar content being viewed by others

References

  1. Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  2. Ilani, S. et al. The microscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004).

    Article  ADS  Google Scholar 

  3. Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004).

    Article  ADS  Google Scholar 

  4. Cobden, D. H., Barnes, C. H. W. & Ford, C. J. B. Fluctuations and evidence for charging in the quantum Hall effect. Phys. Rev. Lett. 82, 4695–4698 (1999).

    Article  ADS  Google Scholar 

  5. Jouault, B. et al. Landau levels analysis by using symmetry properties of mesoscopic Hall bars. Phys. Rev. B 76, 161302(R) (2007).

    Article  ADS  Google Scholar 

  6. Pereira, A. L. C. & Chalker, J. T. Electrostatic theory for imaging experiments on local charges in quantum Hall systems. Physica E 31, 155–159 (2006).

    Article  ADS  Google Scholar 

  7. Struck, A. & Kramer, B. Electron correlations and single-particle physics in the integer quantum Hall effect. Phys. Rev. Lett. 97, 106801 (2006).

    Article  ADS  Google Scholar 

  8. Sohrmann, C. & Römer, R. A. Compressibility stripes for mesoscopic quantum Hall samples. New J. Phys. 9, 97–122 (2007).

    Article  ADS  Google Scholar 

  9. Thouless, D. J. et al. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  10. Huo, Y. & Bhatt, R. N. Current carrying states in the lowest Landau level. Phys. Rev. Lett. 68, 1375–1378 (1992).

    Article  ADS  Google Scholar 

  11. Yang, K. & Bhatt, R. N. Current-carrying states in a random magnetic field. Phys. Rev. B 55, R1922–R1925 (1997).

    Article  ADS  Google Scholar 

  12. Thouless, D. J. Wannier functions for magnetic sub-bands. J. Phys. C 17, L325–L327 (1984).

    Article  ADS  Google Scholar 

  13. Pruisken, A. M. M. Universal singularities in the integral quantum Hall effect. Phys. Rev. Lett. 61, 1297 (1988).

    Article  ADS  Google Scholar 

  14. Huckestein, B. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 357–396 (1995).

    Article  ADS  Google Scholar 

  15. Wei, H. P. et al. Experiments on delocalization and university in the integral quantum Hall effect. Phys. Rev. Lett. 61, 1294–1296 (1988).

    Article  ADS  Google Scholar 

  16. Středa, P. Theory of quantised Hall conductivity in two dimensions. J. Phys. C 15, L717–L721 (1982).

    Article  ADS  Google Scholar 

  17. Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum. Phys. Rev. Lett. 75, 1348–1351 (1995).

    Article  ADS  Google Scholar 

  18. Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 53, 7010–7023 (1985).

    Article  ADS  Google Scholar 

  19. Yoo, M. J. et al. Scanning single-electron transistor microscopy: Imaging individual charges. Science 276, 579–582 (1997).

    Article  Google Scholar 

  20. Zhitenev, N. B. et al. Imaging of localized electronic states in the quantum Hall regime. Nature 404, 473–476 (2000).

    Article  ADS  Google Scholar 

  21. Zhou, C. & Berciu, M. Resistance fluctuations near integer quantum Hall transitions in mesoscopic samples. Europhys. Lett. 69, 602–608 (2005).

    Article  ADS  Google Scholar 

  22. Zhou, C. & Berciu, M. Correlated mesoscopic fluctuations in integer quantum Hall transitions. Phys. Rev. B 72, 085306 (2005).

    Article  ADS  Google Scholar 

  23. Jain, J. K. & Kivelson, S. A. Quantum Hall effect in quasi one-dimensional systems: Resistance fluctuations and breakdown. Phys. Rev. Lett. 60, 1542–1545 (1988).

    Article  ADS  Google Scholar 

  24. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  25. Laughlin, R. B. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  26. Haldane, F. D. M. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605–608 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  27. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Jouault and X.-G. Zhang for many stimulating discussions and insightful opinions. This research was carried out at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. M.B. acknowledges support from the Sloan Foundation, CIfAR Nanoelectronics and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Berciu, M. Spectral weight transfer in the integer quantum Hall effect and its consequences. Nature Phys 4, 24–27 (2008). https://doi.org/10.1038/nphys786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys786

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing