Abstract
Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BPND)) in patients with Parkinson’s disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1 h supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [18F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BPND. At baseline, striatal D2/D3 BPND did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BPND, whereas those in the education group did not. There were no changes in D2/D3 BPND in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Ballard ME, Mandelkern MA, Monterosso JR, Hsu E, Robertson CL, Ishibashi K et al (2015). Low dopamine D2/D3 receptor availability is associated with steep discounting of delayed rewards in methamphetamine dependence. Int J Neuropsychopharmacol 18: pyu119.
Boileau I, Payer D, Houle S, Behzadi A, Rusjan PM, Tong J et al (2012). Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study. J Neurosci 32: 1353–1359.
Bonci A, Volkow, Robertson, Berman London (2013). Molecular imaging in addictive disorders. In: Charney N, Sklar Buxbaum (eds). Neurobiology of Mental Illness, 4th edn. Oxford University Press: Oxford, UK.
Broft A, Martinez D (2012). Neurochemical imaging of addictive disorders. In: Gründer G (ed). Molecular Imaging in the Clinical Neurosciences. Humana Press, New York, Vol 71, pp 249–271.
Cotman CW, Berchtold NC (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25: 295–301.
Cropley VL, Innis RB, Nathan PJ, Brown AK, Sangare JL, Lerner A et al (2008). Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans. Synapse 62: 399–408.
Dagher A, Robbins TW (2009). Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron 61: 502–510.
Devos D, Kroumova M, Bordet R, Vodougnon H, Guieu JD, Libersa C et al (2003). Heart rate variability and Parkinson’s disease severity. J Neural Transm 110: 997–1011.
Dolezal BA, Chudzynski J, Dickerson D, Mooney L, Rawson RA, Garfinkel A et al (2014). Exercise training improves heart rate variability after methamphetamine dependency. Med Sci Sports Exerc 46: 1057–1066.
Dunn JT, Clark-Papasavas C, Marsden P, Baker S, Cleij M, Kapur S et al (2013). Establishing test-retest reliability of an adapted [(18)F]fallypride imaging protocol in older people. J Cereb Blood Flow Metab 33: 1098–1103.
Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J et al (2013). Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. Neuroreport 24: 509–514.
Fujita M, Cropley V, Nathan P, Brown A, Sangare J, Ryu Y et al (2006). Test retest reproducibility and influence of dopamine levels on [18F]fallypride PET quantification. J Nucl Med Meeting Abstracts 47 (Suppl_1): 282P.
Gerecke KM, Jiao Y, Pagala V, Smeyne RJ (2012). Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice. PLoS One 7: e43250.
Gerfen CR, Surmeier DJ (2011). Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34: 441–466.
Ghahremani DG, Lee B, Robertson CL, Tabibnia G, Morgan AT, De Shetler N et al (2012). Striatal dopamine D(2)/D(3) receptors mediate response inhibition and related activity in frontostriatal neural circuitry in humans. J Neurosci 32: 7316–7324.
Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB, Day HE et al (2011). Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 217: 354–362.
Groman SM, Lee B, Seu E, James AS, Feiler K, Mandelkern MA et al (2012). Dysregulation of d2-mediated dopamine transmission in monkeys after chronic escalating methamphetamine exposure. J Neurosci 32: 5843–5852.
Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994). Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 11: 245–256.
Hillman CH, Erickson KI, Kramer AF (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9: 58–65.
Ishibashi K, Robertson CL, Mandelkern MA, Morgan AT, London ED (2013). The simplified reference tissue model with 18F-fallypride positron emission tomography: choice of reference region. Mol Imaging 12: 1536-0121.
Jenkinson M, Bannister P, Brady M, Smith S (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825–841.
Johanson CE, Frey KA, Lundahl LH, Keenan P, Lockhart N, Roll J et al (2006). Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology (Berl) 185: 327–338.
Kohno M, Ghahremani DG, Morales AM, Robertson CL, Ishibashi K, Morgan AT et al (2015). Risk-taking behavior: dopamine D2/D3 receptors, feedback, and frontolimbic activity. Cereb Cortex 25: 236–245.
Lammertsma AA, Hume SP (1996). Simplified reference tissue model for PET receptor studies. Neuroimage 4 (3 Pt 1): 153–158.
Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR et al (2009). Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci 29: 14734–14740.
Ling W, Rawson R, Shoptaw S, Ling W (2006). Management of methamphetamine abuse and dependence. Curr Psychiatry Rep 8: 345–354.
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (2013). Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 37: 1622–1644.
MacRae PG, Spirduso WW, Cartee GD, Farrar RP, Wilcox RE (1987). Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci Lett 79: 138–144.
Marshall JF, O’Dell SJ (2012). Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci 35: 536–545.
Martinez D, Carpenter KM, Liu F, Slifstein M, Broft A, Friedman AC et al (2011). Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. Am J Psychiatry 168: 634–641.
McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J et al (2008). Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62: 91–100.
Mooney LJ, Cooper C, London ED, Chudzynski J, Dolezal B, Dickerson D et al (2014). Exercise for methamphetamine dependence: rationale, design, and methodology. Contemp Clin Trials 37: 139–147.
Mukherjee J, Yang ZY, Brown T, Lew R, Wernick M, Ouyang X et al (1999). Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol 26: 519–527.
Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N et al (2006). PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9: 1050–1056.
O’Dell SJ, Galvez BA, Ball AJ, Marshall JF (2012). Running wheel exercise ameliorates methamphetamine-induced damage to dopamine and serotonin terminals. Synapse 66: 71–80.
Rawson RA, Chudzynski J, Gonzales R, Mooney L, Dickerson D, Ang A et al (2015). The impact of exercise on depression and anxiety symptoms among abstinent methamphetamine-dependent individuals in a residential treatment setting. J Subst Abuse Treat 57: 36–40.
Real CC, Ferreira AF, Chaves-Kirsten GP, Torrao AS, Pires RS, Britto LR (2013). BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of Parkinson’s disease. Neuroscience 237: 118–129.
Robertson CL, Ishibashi K, Mandelkern MA, Brown AK, Ghahremani DG, Sabb F et al (2015). Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects. J Neurosci 35: 5990–5997.
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Jana J, Weiller E et al (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59 (Suppl 20): 22–33 quiz 34-57.
Thanos PK, Volkow ND, Freimuth P, Umegaki H, Ikari H, Roth G et al (2001). Overexpression of dopamine D2 receptors reduces alcohol self-administration. J Neurochem 78: 1094–1103.
Volkow ND, Baler RD (2014). Addiction science: uncovering neurobiological complexity. Neuropharmacology 76 (Pt B): 235–249.
Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M et al (2001). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21: 9414–9418.
Volkow ND, Wang GJ, Begleiter H, Porjesz B, Fowler JS, Telang F et al (2006). High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry 63: 999–1008.
Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Wong C et al (1999). Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J Pharmacol Exp Ther 291: 409–415.
Volkow ND, Wang GJ, Newcorn JH, Kollins SH, Wigal TL, Telang F et al (2011). Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry 16: 1147–1154.
Vuckovic MG, Li Q, Fisher B, Nacca A, Leahy RM, Walsh JP et al (2010). Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: in vivo imaging with [(1)(8)F]fallypride. Mov Disord 25: 2777–2784.
Wang GJ, Smith L, Volkow ND, Telang F, Logan J, Tomasi D et al (2012). Decreased dopamine activity predicts relapse in methamphetamine abusers. Mol Psychiatry 17: 918–925.
Wang GJ, Volkow ND, Fowler JS, Franceschi D, Logan J, Pappas NR et al (2000). PET studies of the effects of aerobic exercise on human striatal dopamine release. J Nucl Med 41: 1352–1356.
Wu Y, Carson RE (2002). Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 22: 1440–1452.
Zald DH, Woodward ND, Cowan RL, Riccardi P, Ansari MS, Baldwin RM et al (2010). The interrelationship of dopamine D2-like receptor availability in striatal and extrastriatal brain regions in healthy humans: a principal component analysis of [18F]fallypride binding. Neuroimage 51: 53–62.
Zlebnik NE, Hedges VL, Carroll ME, Meisel RL (2014). Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats. Behav Brain Res 261: 71–78.
Zorick T, Lee B, Mandelkern MA, Fong T, Robertson C, Ghahremani DG et al (2012). Low striatal dopamine receptor availability linked to caloric intake during abstinence from chronic methamphetamine abuse. Mol Psychiatry 17: 569–571.
Zorick T, Nestor L, Miotto K, Sugar C, Hellemann G, Scanlon G et al (2010). Withdrawal symptoms in abstinent methamphetamine-dependent subjects. Addiction 105: 1809–1818.
Author information
Authors and Affiliations
Corresponding author
PowerPoint slides
Rights and permissions
About this article
Cite this article
Robertson, C., Ishibashi, K., Chudzynski, J. et al. Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment. Neuropsychopharmacol 41, 1629–1636 (2016). https://doi.org/10.1038/npp.2015.331
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/npp.2015.331
This article is cited by
-
Mood Lifters: A Dimensional Approach to Mental Health Care
International Journal of Cognitive Therapy (2024)
-
White matter lesion load determines exercise-induced dopaminergic plasticity and working memory gains in aging
Translational Psychiatry (2023)
-
Effects of Aerobic Exercise Combined with Attentional Bias Training on Cognitive Function and Psychiatric Symptoms of Individuals with Methamphetamine Dependency: a Randomized Controlled Trial
International Journal of Mental Health and Addiction (2023)
-
Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment
Molecular Psychiatry (2022)
-
Effects of a Group-Based Aerobic Exercise Program on the Cognitive Functions and Emotions of Substance Use Disorder Patients: a Randomized Controlled Trial
International Journal of Mental Health and Addiction (2022)