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Summary

T cell activation through the antigen receptor (TCR) requires sustained signalling from

microclusters in the peripheral region of the immunological synapse (IS). The bioenergetics of

such prolonged signaling have been linked to the redistribution of mitochondria to the IS. Here,

we report that stomatin-like protein-2 (SLP-2) plays an important role in this process by bridging

polarized mitochondria to these signaling TCR microclusters or signalosomes in the IS in a

polymerized actin-dependent manner. In this way, SLP-2 helps to sustain TCR-dependent

signalling and enhances T cell activation.
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Introduction

CD4
+

T cell activation involves the formation of a highly organized interface between the T cell

and the antigen-presenting cell (APC) known as the IS
1-4

. This process requires selective

polarization of some surface and intracellular molecules to the IS-proximal pole
5

and of others

to the antipodal pole of the T cell
6,7

, in a cytoskeleton-dependent manner. Furthermore, T cell

polarization is highly dynamic as illustrated, within the IS, by the early detection of signalling

microclusters in the outer ring of the synapse
8

and their subsequent movement, as activation

proceeds, to the centre of the synapse where they are internalized and destined to degradation
2,3,9

to ensure signal down-regulation 
10

.

A picture on how TCR signalling orchestrates cytoskeletal reorganization and

polarization of surface and intracellular molecules is rapidly emerging
11-13

. However, much less

is known about translocation and anchoring of organelles during T cell polarization. Recently,

two reports have nicely documented the redistribution of mitochondria during different states of

T cell function. Specifically, mitochondria translocate to the IS during T cell activation
14

, but

relocate to the uropod during T cell locomotion
15

. Such a dynamic partitioning of mitochondria

may have important implications in assuring the bioenergetics required for sustained signaling

which in turn is required for full T cell responses.

To identify novel components of the molecular machinery that “bridge” TCR

signalosomes with the cytoskeleton and cellular organelles, we performed a proteomic analysis

of lipid raft microdomains from T cells undergoing activation through their TCR. Such an

approach identified stomatin-like protein 2 (SLP-2) (also known as STOML2 or EPB72), a

finding corroborated by other groups
16,17

. SLP-2 is a member of the highly conserved stomatin

family of proteins whose homologs span from archae to humans and include stomatin, SLP-1,
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and SLP-3
18-22

. SLP-2 shares a central SPFH (stomatin/prohibitin/flotillins/HflK-HflC) domain

characteristic of this family that may mediate interactions with membrane proteins
23-25

.

However, SLP-2 is unique among stomatins in that it does not have a putative transmembrane

domain, but has six myristoylation/palmitoylation sites and an N terminal mitochondria targeting

sequence
25,26

.

The function of stomatins, including SLP-2, is unknown. It has been suggested that they

are involved in the organization of the peripheral cytoskeleton, and in the assembly of ion

channels
25,27-30

and mechanosensation receptors
31-37

. Here, we report that SLP-2 provides a

structural link between synapse-polarized mitochondria and TCR signalosomes, and thus

contributes to modulate TCR signaling and T cell activation.

Results

To explore the involvement of SLP-2 in immune cell activation, we first looked at its expression

within human hematopoietic organs and tissues. We detected SLP-2 mostly in lymph nodes and

thymus, and in lower amount, in tonsils (figure 1A). Little expression was detected in spleen and

resting peripheral blood leukocytes, and the differences were not due to protein loading as

normalized by blotting with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In

individuals in which SLP-2 was detectable in peripheral blood mononuclear cells, it was

expressed by monocytes, and to less extent, by T and B lymphocytes (supplemental figure 1).

In lymph nodes, SLP-2 was mostly detected in the paracortical (T cell) area and in the

germinal centres (B cell area) (figure 1B). In the thymus, SLP-2 expression was higher in the

cortex than in the medulla (figure 1B). The higher expression of SLP-2 in sites where

lymphocyte signaling and activation takes place (i.e., antigen activation in lymph nodes and
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tonsils, positive and negative selection in the thymus) prompted us to examine the effect of

activation on SLP-2 expression. Although peripheral blood T cells express low levels or no

SLP-2 under resting conditions, activation of these cells with bacterial superantigens led to a

significant up-regulation of its expression (figure 1C). Similarly, in B cell preparations from

human tonsils fractionated according to their activation status, SLP-2 was mostly detected in the

fraction corresponding to activated memory (CD20
bright

, CD27
+
) B cells (figure 1D). Seventy

three percent of cells in this fraction (f1) were activated memory B cells (as indicated by

expression of CD27), and only 8% of cells in this fraction were naïve B cells. In contrast, 60%

of the cells in fraction 4 were naïve B cells and only 11% were activated memory B cells.

Fractions 2 and 3 had progressively decreasing numbers of activated memory B cells (52% and

32%, respectively) and increasing numbers of naïve B cells (17% and 45% respectively).

Therefore, the profile of SLP-2 expression in these fractions correlated with the presence of

activated memory B cells. Together these data led us to conclude that SLP-2 expression is up-

regulated by in vivo and ex vivo lymphocyte activation.

To define the role of SLP-2 in T cell activation, we next established its intracellular

distribution in resting T cells and during activation with APC and the staphylococcal enterotoxin

E (SEE) bacterial superantigen. In Jurkat T cells stably transfected with a doxycycline-

inducible, green fluorescence protein (gfp)-tagged SLP-2 (SLP-2-gfp), we identified two pools

of SLP-2. Most SLP-2 signal was detected in intracellular clusters distributed in a relatively

even fashion throughout the cell. In addition, a second small but significant pool of SLP-2 was

consistently detected in the periphery of the cytoplasm and appeared to be associated with the

inner leaflet of the plasma membrane (figure 2A). Similar distribution was observed with

indirect immunofluorescence of endogenous SLP-2 using an antiserum against SLP-2
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(supplemental figure 2). The presence of two pools of SLP-2 within T cells was also documented

by immunoblotting of subcellular T cell fractions (supplemental figure 3).

Upon activation of these Jurkat T cells with APC and SEE, both pools of SLP-2 (plasma

membrane-associated pool and intracellular pool) converged towards putative synapses, and

coalesced into a major cluster close to the plasma membrane in the periphery of the IS and

underneath the T cell-APC interface (figure 2B). Such a polarization of SLP-2 was observed in

more than 60% of T cells and was not due to “nuclear exclusion” or non-specific redistribution

of molecules to the IS as we
7

and others
6,38

have shown for gfp-tagged signaling molecules

(e.g., phosphodiesterase 4B2). Next, we examined the redistribution of SLP-2 once it had

relocated to the IS. We found that, after polarizing to the T cell:APC interface, more than 80%

of the polarized SLP-2-gfp partitioned in the periphery of the synapse and underneath the IS as

activation proceeded, and only a small fraction of SLP-2 was detectable in the centre of the IS

where downregulated TCR clusters are  (figure 2C and supplementary video 1).

The polarization of SLP-2 during T cell activation was examined in more detail using

supported planar bilayers containing anti-CD3 and ICAM-1 to which T cells form IS-like

structures (figure 3 and supplementary videos 2A and 2B). This system has excellent optics for

resolution of components in the IS. With this system, and under conditions of doxycycline-

induced SLP-2-gfp overexpression, we confirmed the presence of two pools of SLP-2. The

plasma membrane-associated pool of SLP-2 was visualized by total internal reflection

fluorescence microscopy (TIRFM) as weak but consistent signal clusters located at less than

200nm from the glass plane (i.e., sites of TCR and LFA-1 engagement) (figure 3A). In the early

or nascent IS, this pool of SLP-2 was distributed in a uniform granular appearance with TCR

microclusters (figure 3A top row). However, as activation proceeded, we observed a reduction
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of SLP-2 fluorescence in the TCR microclusters as these relocated to the centre of the IS (up to

50% reduction) (figure 3A bottom row), while densely packed SLP-2 clusters were still observed

in the periphery of the IS. It is important to note that the TCR clusters at the centre of the

synapse have been identified as not-signaling clusters any more but as TCR oligomers destined

to internalization and degradation.

The major pool of SLP-2-gfp, located at more than 200 nm from the plasma membrane,

also polarized to the IS and distributed close to the pSMACs, segregated from the cSMACs, as

activation proceeded (figure 3B, supplementary video 2A, and Table 1). This major pool of SLP-

2 within the cell was identified as associated with mitochondria as shown by the co-localization

of the gfp signal with a mitochondria-targeted red fluorescence protein (mtRFP) (figure 3C). Of

interest, such a polarization of mitochondria to the IS has been recently confirmed by another

group
14

.

The polarization of SLP-2 to the IS and its peripheral distribution once in the synapse

required TCR engagement because, as determined by wide field fluorescence microscopy, it was

observed in 100% of the cells forming an IS in response to TCR/LFA-1 co-ligation but in none

of the cells responding to LFA-1 ligation alone (Table 2, and supplementary videos 2A and 2B).

The distribution of SLP-2 during T cell activation was stable as shown by fluorescence

recovery after photobleaching (FRAP) (figure 4 and supplementary videos 3A and 3B). In these

experiments, the SLP-2 signal was restored after 400 seconds of bleaching the plasma membrane

of non-stimulated T cells but was not restored when SLP-2-gfp clusters in OKT3-stimulated T

cells were bleached within the same timeline. Furthermore, we documented that SLP-2 was

detected in lipid rafts and its partitioning to these microdomains increased during T cell

activation (supplemental figure 4).
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The dynamic redistribution of both pools of SLP-2 to the IS suggested the idea that they

participate in signalling from the TCR. So, we tested if SLP-2 interacted with the components of

TCR signalosomes during activation for up to 60 minutes, a time window that covers the

formation of signalling microclusters and mature IS (figure 5A). We observed that SLP-2

steadily associated with the CD3 � chain of the TCR complex under resting conditions and

during the 60 minutes of stimulation. With co-precipitation studies, we determined that about

0.09% of the cellular SLP-2 associated with the TCR complex (supplemental figure 5). The

association of SLP-2 with the TCR/CD3 complex was selective because no association of SLP-2

with other surface receptors (e.g., CD45, CTLA-4) or with control intracellular molecules

(RasGAP, caspase 3 – see below) was detected (figure 5A and data not shown). Furthermore,

the interaction of SLP-2 with cell surface receptors was documented by co-precipitation of SLP-

2-gfp with biotinylated surface receptors and was lost when SLP-2-gfp lacked the N terminal

membrane-targeting signal of SLP-2 (supplemental figure 6).

SLP-2 interacted with Lck under basal conditions, and this interaction increased for up to

15 minutes of stimulation, beyond which it decreased and disappeared by 60 minutes of

stimulation. The pool of Lck associated with SLP-2 included both active Lck and recently

activated Lck as illustrated by the detection of p56 and p59 Lck forms. SLP-2 also associated

with ZAP-70 but the association with this kinase occurred after 1 minute of stimulation and

lasted for only 5 minutes, decreasing afterwards to practically undetectable levels (figure 5A).

The profile of SLP-2 association with ZAP-70 during TCR signaling is consistent with the

findings of other co-precipitation studies
39

and compatible with the sequential involvement of

Lck and ZAP-70 in early TCR signalling
40

. We also documented the interaction of SLP-2 with

LAT, and of SLP-2 with the active (phosphorylated) form of PLC-�1 between 1 peaking at 5
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minutes of stimulation and decreasing afterwards. Of interest, we observed the association

between SLP-2 and non-phosphorylated PLC-�1 during the full time course (figure 5A),

suggesting that SLP-2/PLC-�1 complexes may be preassembled before TCR signalling.

During synapse formation, LFA-1 is organized in microclusters in the pSMAC. In this

area, LFA-1 microclusters are interspersed with TCR microclusters
9
. As predicted by the

location of SLP-2 in the periphery of the IS, we found that, upon activation with SEE and APC,

there was a rapid increase in the level of association of SLP-2 with LFA-1 that decreased at later

time points of activation (figure 5B).

It is important to note that all the co-precipitation studies reported above were performed

under high stringency condition with strong detergents (Triton X-100 1%). Also, under these

conditions, we detected selective interactions of SLP-2 with only some receptors and signaling

molecules but not with other molecules (e.g., CD45, CTLA-4, RasGAP, caspase 3).

Since TCR signaling leads to cytoskeletal reorganization, and since the cytoskeleton is

required for intracellular movement of mitochondria, we predicted that the association of SLP-2

with the TCR signalosome and with mitochondria during T cell activation would involve the

cytoskeleton. To test this idea, we examined the interaction of SLP-2 with actin. We found that

SLP-2 interacted with actin under resting conditions and upon TCR stimulation (figure 5C).

SLP-2 also interacted with vav, a small GTPase that regulates cytoskeletal reorganization, and

with Nck, an adaptor protein that links transmembrane and scaffolding molecules to the

cytoskeleton
41

(and this interaction peaked at the times of maximal interaction between SLP-2

and the components of the signalosome) (figure 5C). The association between SLP-2 and

cytoskeletal molecules was not observed using a control pre-immune serum, ruling out a non-

specific association. Furthermore, the association between SLP-2 and �-actin during T cell
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activation involved the polymerized form of actin because cytochalasin D, an inhibitor of actin

polymerization, completely prevented this interaction (figure 5D). It is important to note that T

cell activation in our system is dependent on actin polymerization, because inhibition of actin

polymerization led to inhibition of IL-2 production (figure 5D).

Next, we examined the biological implications of the interactions between SLP-2 and the

components of the TCR signalosome. We reasoned that, if SLP-2 was required for signaling

from the TCR signalosomes, then knocking down SLP-2 would decrease TCR signalling. To

test this hypothesis, we knocked down SLP-2 expression by RNA interference using two

different sets of siRNAs. We found that the effect of SLP-2 down-regulation on IS formation

was minimal (although statistically significant over multiple experiments) (figure 6A; this figure

shows one example of synapse-forming, SLP2 siRNA-treated T cell – panel #1 - and one

example in which no synapse was observed – panel #2). However, as predicted, SLP-2 down-

regulation significantly shorten the timeline of TCR signaling (Figure 6B). We found that, at

equal levels of early TCR signaling (as measured by similar levels of initial ERK-1/-2

activation), down-regulation of SLP-2 caused a remarkably shorter duration of ERK activation in

response to TCR stimulation, already apparent at 5 minutes and still significant at 10 minutes of

stimulation (figure 6B).

The effect of SLP-2 down-regulation on TCR signalling was functionally significant.

Using Jurkat T cells stably transfected with a doxycycline-inducible SLP-2-gfp, we found that de

novo over-expression of SLP-2 (as corroborated by FACS) significantly increased IL-2

production in response to SEE and APC (figure 7A). In contrast, knocking-down the expression

of SLP-2 in Jurkat T cells (by about 80% on average, with three different siRNA constructs)

correlated with a significant decrease of the IL-2 response to APC and SEE (figure 7A). These
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findings were corroborated with primary human T lymphocytes from normal volunteers. Naïve

T cells express low levels of SLP-2 (figure 7B). However, upon activation, SLP-2 protein

expression is up-regulated significantly within 30-42 hours. Thus, to induce high expression of

SLP-2 in primary human T lymphocytes, we pre-activated these cells with a mitogenic

combination of phorbol ester and ionomycin for 3 days, followed by a resting period. At this

point, these effector T cells and their naïve T cell counterparts from the same donor were

nucleofected with SLP-2 siRNA or control siRNA, re-stimulated with SEE and APC for 24

hours, and their IL-2 response examined. As shown in figure 7B, knocking-down the expression

of SLP-2 by more than 60% correlated with a significant decrease in the IL-2 response of the

effector T cells (around 10-100 times) as illustrated by the ‘shift to the right’ of the dose-

response curve to SEE (p<0.001). Little effect was observed for SLP-2 siRNA in resting T cells

in which SLP-2 expression is almost absent. Also, SLP-2 siRNA had no effect on the IL-2

response of human T cells to mitogenic stimulation with PMA and ionomnycin, which bypasses

membrane-associated events (supplemental figure 7). Therefore, we concluded that down-

regulation of SLP-2 expression prevented sustained TCR signaling and decreased IL-2

production by effector T cells.

Discussion

To our knowledge, we provide the first biological evidence of a function for SLP-2 in an

eukaryotic cell type - that of sustaining TCR signalling and enhancing T cell activation. Such a

role involves the redistribution of two subcellular pools of SLP-2, one in association with

mitochondria and the other with the plasma membrane, and their convergence at the IS. Under

resting conditions, SLP-2 is mostly located in mitochondria and, less abundantly, in association

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
06

8.
1 

: P
os

te
d 

21
 S

ep
 2

00
7



Kirchhof et al.: SLP-2 and TCR signalling

12

with the plasma membrane. Upon T cell activation, both pools of SLP-2 converge and coalesce

into the peripheral area of the IS, a region where signaling TCR microclusters have been reported

to accumulate
9
. At the biochemical level, the redistribution of SLP-2 correlates with SLP-2

interaction with components of the TCR signalosomes and with polymerized actin. At the

functional level, such a redistribution correlates with modulation of SLP-2 expression regulating

the profile of TCR signaling and the magnitude of T cell responses. Putting these observations

together, we suggest that SLP-2 contributes to sustain TCR signalling and enhances T cell

activation by bridging mitochondria to TCR signalosomes through polymerized actin, ensuring

the bioenergetic requirements of TCR-dependent signalling.

Using morphological and biochemical approaches, we have identified two pools of SLP-2

in T cells: a plasma membrane-associated one and a mitochondrial one. Such a profile of

intracellular distribution is in line with the presence of myristoylation-palmitoylation sites in

SLP-2 as well as by a good mitochondria-targeting sequence in its N terminus
25

, and it is

consistent with the detection of SLP-2 in membranes of other cell lineages
16,42-44

. Of interest,

the presence of SLP-2 in mitochondria and plasma membrane is also reminiscent of the finding

of other proteins (e.g., porin) in both pools 
45

.

Our findings identify a novel regulatory mechanism of TCR signaling based on

cytoskeleton-dependent interaction between signaling TCR microclusters or signalosomes and

cellular organelles
12

. Such a mechanism may be applicable to other members of the lipid

raft–enriched, prohibitin-flotillin-stomatin family of proteins
46,47

. For example, prohibitin is

indispensable for the activation of the Ras-ERK signalling pathway
48

, a role also proposed for

the flotillins
49-51

. Although the interaction of plasma membrane SLP-2 with the TCR

signalosome components during activation was too small to be visualized by current imaging
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techniques, it was clearly documented by the biochemical studies. Also, the visualization of SLP-

2 exclusion from TCR clusters at the centre of the synapse at late timer points of activation is

consistent with our interpretation of SLP-2 interaction with the signaling TCR clusters, as the

TCR clusters at the centre of the synapse are not signaling but destined to degradation. In

addition, the imaging studies demonstrated that both pools of SLP-2 coalesce and stably position

close to the peripheral areas of the synapse.

The redistribution of the mitochondrial pool of SLP-2 to the IS is consistent with the

recently reported translocation of these organelles to the IS
14

. Such mitochondrial partitioning is

one more example of an emerging broader concept of translocation of these organelles to

different poles of the cell during biological responses, through nitochondrial fission and fusion

and in a cytoskeleton and/or microtubule-dependent fashion
52

. For example, mitochondria

relocate to the uropod during T cell locomotion through a mechanism that involves microtubules

and mitochondrial fission
15

. In contrast to locomotion, we would suggest that the relocation of

SLP-2 to the IS during T cell activation reflects net mitochondrial fusion. Such a possibility is

suggested by the recent report that mitofusin-2, a mitochondrial fusion protein, can interact with

SLP-2 in vitro
25

, and by preliminary data indicating that overexpression of SLP-2 up-regulates

the expression of proteins involved in mitochondrial fusion (C.D.L and J.M., unpublished

observations). The precise structural complex that bridges the mitochondria with the

cytoskeleton through SLP-2 is still unknown.

Finally, we show that modulation of SLP-2 expression regulates T cell activation, so that

increasing the levels of SLP-2 enhances IL-2 responses while decreasing SLP-2 expression

decreases Il-2 responses. It is important to note that, as we show, up-regulation of SLP-2

expression occurs in vivo and ex vivo during lymphocyte activation. Such a finding may partially
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explain the long-standing observations that, at equal requirement for sustained signaling, primary

naïve T cells show much fainter signal transduction than primed T cells and that the

responsiveness of primed T cells is greater than that of naïve T cells. Most studies of TCR

microclusters and IS formation have also used effector T cells, which require fewer engaged

TCRs as well as less CD28-dependent costimulation. One may therefore argue that the up-

regulation of SLP-2 may be one of the factors that contribute to enhance the responsiveness of

effector lymphocytes by providing more effective sustained signaling from TCR signalosomes

53,54
.

Material and methods

Plasmids, siRNA and T cell transfectants. Human SLP-2 cDNA was subcloned into the pEGFP-

N1 expression vector (Clontech Inc. Palo Alto, CA) to create an in-frame translational fusion of

SLP-2 and gfp at the 3’ end. Subsequently, the SLP-2-gfp was placed into the doxycycline-

inducible pBig2i vector
55

. Stable transfectants were generated by electroporating linearized

plasmid into Jurkat E6.1 T cells and screened for stable expression. Doxycycline (Sigma, St.

Louis, MO) was added in culture overnight at 1000 ng/mL to induce SLP-2-gfp expression.

Expression of SLP-2-gfp was monitored by direct flow cytometry (Becton Dickinson, CA). RNA

interference targeting SLP-2 (cat # 20643 and 20467) was obtained (Ambion, Austin, TX) and

transfected into Jurkat T cells or PBMC and PBMC blasts using either the Nucleofector kit for

cell lines or for human primary T cells (Amaxa, Gaithersberg, MD). As controls for SLP-2

siRNA, we used negative control siRNAs provided by the commercial supplier (Ambion). These

controls siRNAs have no significant similarity to any known gene sequences from mouse, rat, or

human and no toxicity to cells, have been shown to lack any significant effect in cell
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proliferation and apoptosis assays, and do not modulate the mRNA levels of “housekeeping”

genes (18S rRNA, GAPDH, and cyclophilin) up to 48 hr after transfection. In addition, GFP

cDNA was used as a control for nucleofection efficiency. After siRNA or control transfection,

cells were rested for 24 hours until optimum down-regulation of SLP-2 was observed before

proceeding with any functional assays. The cDNA coding for mitocondria-targeted RFP has

been previously described
15

and was kindly provided by Dr. A. Viola (Venetian Institute of

Molecular Medicine, Padua, Italy).

Cells. Peripheral blood mononuclear cells (PBMC) were isolated from heparinized whole blood

of normal donors using Ficoll-Hypaque (Amersham Pharmacia Biotech, Uppsala, Sweden)

gradients. Cells were washed in supplemented RPMI 1640 media and resuspended at 1 x 10
6

cells/ml. PBMC blasts were generated by culturing PBMC with Phorbol Myristate Acetate

(PMA; 1 ng/ml) and Ionomycin (100 ng/ml) for 72 hours at 37
o
C, 5 % CO2. T cells blasts were

rested 48 hours before use in any experiments. Primary T cells were isolated from PBMC using

a Pan T cell Isolation Kit (Miltenyi Biotech, Auburn, CA). Jurkat T cells (E6.1) were obtained

from American Type Culture Collection (Manassas, VA) and cultured in supplemented RPMI

1640 medium. The B lymphoblastoid cell line LG2, used as APC in some of these experiments,

was kindly provided by Dr. Eric Long (NIAID, NIH, Rockville, MD) and cultured in standard

supplemented RPMI 1640 media. Lysates from human tissues were obtained from ProSci Inc.

(Poway, CA).

Antibodies. An antiserum against human SLP-2 was generated by immunization of rabbits with

a peptide spanning amino acids 343 to 356 (ProSci Inc., Poway, CA). Commercially available

antibodies against SLP-2 were purchased from Protein Tech Group (Chicago, IL).

Immunoblotting for ERK-1/2 was done using a rabbit polyclonal immunoaffinity purified
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antiserum (Stressgen Biotechnologies, Victoria, BC, Canada). Actin was immunoblotted using

an affinity-purified goat polyclonal antiserum (Santa Cruz Biotechnology Inc., Santa Cruz, CA).

CD45 was immunoblotted using a mouse monoclonal (clone 69) antibody (BD Biosciences,

Mississauga, ON, CA). Lck and Nck were immunoblotted using rabbit antisera (Upstate

Biotechnology, Lake Placid, NY). Isotype control immunoprecipitations were performed using

pre-immune serum obtained from ProSci. A pre-immunization serum was used as control for

rabbit antisera (ProSci Inc., Poway, CA). Immunoprecipitation of SLP-2 was performed with our

SLP-2 antibodies (Prosci, Poway, CA). For confocal microscopy a PE-labelled anti-CD3

(UCHT-I) was used.

Sub-Cellular Fractionation, and Raft isolation. Subcellular T cell compartments were obtained

using the Compartmental Protein Extraction Kit (Chemicon, Temecula, CA). Lipid rafts were

isolated by sucrose gradient ultracentrifugation following lysis with 0.5% Triton-X-100 as

described
56

. Lipid rafts were pelleted by centrifugation of the 1mL raft fraction for 1 hour at

14,000 rpm and 4°C, and were resuspended in lysis buffer and sample buffer for biochemical

analysis.

Cell lysates preparation. Jurkat T cells were stimulated with superantigens at final concentration

of 1ug/ml, at 37ºC, for 1, 5, 15, 30 and 60 min. Cells were pelleted in PBS containing sodium o-

vanadate (400uM) and EDTA (400uM) and lysed in lysis buffer (1% Triton X-100, 150mM

NaCl, 10mM Tris (pH7.6), 5mM EDTA, 1mM sodium o-vanadate, 10ug/ml leupeptin, 10ug/ml

aprotinin, 25uM p-nitrophenyl-p’-guanidinobenzoate) at 4ºC for 30min. Lysates were cleared of

debris (14,000rpm, 4ºC, 10min) followed by immunoprecipitation of target molecules using Ab-

coated protein A or G agarose beads.
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Cross-linked immunoprecipitation. Protein A agarose beads were coated wih appropriate Abs at

4ºC overnight. Beads were washed four times with room-temperature lysis buffer and four times

with PBS. Abs were cross-linked to the beads in 1mg/ml of DSP (Pierce) in PBS, at room

temperature rotating for 30mins. The cross-linked Ab-beads were neutralized with 1M Tris,

pH8.0 at room-temperature for 5mins; washed once with lysis buffer and four times with PBS,

and then used for immunoprecipitation. After immunoprecipitation, beads were pelleted and

resuspended in sample buffer without �-Mercaptoethanol. Samples were boiled, pelleted, and

supernatant collected, run in SDS-PAGE, and immunoblotted with the indicated Abs.

Tonsil B cells. Highly purified human tonsil B cells by RosetteSep B cell enrichment cocktail

(StemCell Technologies,Vancouver, BC, Canada) were fractionated by a seven step Percoll

gradient. All fractions were phenotyped for naïve B cells (based on expression of IgM and IgD)

and memory B cells (CD20
bright

and CD27
+
). The proportion of naïve resting B cells increases

from fraction 1 to 4 (from 11% to 66% on average) while the proportion of memory/activated B

cells decreases from fraction 1 to 4 (from 30% to 3% on average). In addition, each fraction was

cultured in vitro to determine spontaneous Ig production. Only fractions 1 and 2 were able to

spontaneously secrete Ig (data not shown). Whole cell lysates from B cells in each fraction were

prepared and immunoblotted with appropriate specific antibody.

Confocal microscopy. Confocal microscopy was performed with a Zeiss LSM 510 microscope.

Jurkat T cells (1x10
6
/ml), were incubated on poly-lysine-coated (0.01%, Sigma) glass bottom

microwell dishes (MatTek Corp., MA) for 10 minutes to promote cell adherence at 37ºC. SLP-

2-gfp distribution during IS formation was assessed by culturing doxycycline-induced SLP-2-gfp

stably transfected T cells with APCs pre-incubated with 1000 ng/ml SEE for either 10 or 30

minutes. Following the allotted time of co-incubation, the T cell-APC conjugates were rapidly
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fixed with paraformaldehyde (4% paraformaldehyde) and washed with PBS/1% FCS and stained

with PE conjugated anti-CD3 (BD Bioscience, Mississauga, ON,CA) for 30 min. on ice. For

experiments using planar membranes, glass-supported dioleoylphosphatidylcholine bilayers

incorporating Cy5-ICAM-1 (300 molecules/μm
2
) and 0.1% cap-biotin were prepared in a

Bioptechs flow cell. Unlabelled Streptavidin (8 μg/mL) and anti-human CD3, OKT3 clone (10

μg/mL), which was conjugated to Cy3, were loaded sequentially in HBS/HSA buffer. Jurkat T

cells were suspended in Hepes buffered saline supplemented with 5 mM glucose, 2 mM MgCl2,

1 mM CaCl2, and 1% human serum albumin (HBS/HSA). All wide field microscopy was

performed on an automated microscope with a Hamamatsu USA Orca-ER cooled CCD camera.

The hardware on the microscope was controlled using IPLAB software (Scanalytics) on a

PowerMac G4 Macintosh computer. Images were exposed in wide field for 1-2 s at a resolution

of 0.11 μm per pixel using the 60x 1.45 N.A. objective. Interference reflection microscopy

(IRM) is based on destructive interference in green light reflected from the bilayer-cell interface

leading to a dark area where cells are in close contact with the bilayer. Images were inspected

using Metamorph (Molecular Devices).

T cell functional assays. SLP-2-gfp, SLP-2 siRNA or control transfected T cells (0.2x10
6

cells/group) were plated in triplicate on 96 well plates with the B lymphoblast LG2 (0.1x10
6

cells/group) with SEE in the presence or absence of 1000 ng/mL doxycycline, at 37°C for 24

hours. Supernatants were collected, and measurement of IL-2 by ELISA was performed

following manufacturer specifications (BD Biosciences, Mississauga ON, CA).

Histological analysis. Tissues from thymi and lymph nodes were fixed with 10% formalin,

embedded in paraffin, and stained with Hematoxylin and Eosin. Immunohistochemical analysis

for SLP-2 was performed with an antisera against SLP-2 at 1/1000 dilution following the
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streptavidin-biotin peroxidase method. CD5 and CD20 (monoclonal, mouse anti-human

antibodies; Dako) stains were also performed to identify T and B lymphocytes respectively, and

correlated with SLP-2 staining. 
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TABLES

Table 1: Segregation of mitochondrial SLP2-gfp from the cSMAC in the mature IS, by

wide field fluorescence microscopy

Segregation No Segregation

25/29 (86.2%) 4/29 (13.8%)

Only cells forming IRM contacts for 3 or more data points were considered.  Images of each field were taken at 2-3

minute intervals. Data is representative of 3 experiments.

Table 2: Percentage of Jurkat T cells on supported planar bilayers organizing SLP2-gfp

close to pSMACs at the contact interface by wide field fluorescence microscopy

Peripheral ring No peripheral ring

10 �g/mL OKT3 + 300 mol/�m
2
 ICAM-1 29

1
8

300 mol/�m
2
 ICAM-1 only 0 29

1p < 0.0001 vs. ICAM-1 only
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FIGURE LEGENDS

Figure 1.- Expression of SLP-2 in the human immune system and its up-regulation upon

lymphocyte activation. A) Commercially available human whole cell lysates from the indicated

organs were sequentially immunoblotted for SLP-2 and GAPDH. Equal loading of protein per

lane was further confirmed by spectroscopy. Results are representative of four independent

experiments. B) Lymph node samples from non-specific B cell adenitis (top row) or T cell

adenitis (middle row), and normal thymus (bottom rows) were stained for SLP-2 using a C-

terminus specific rabbit anti-human SLP-2 antisera or with appropriate controls (CD20
bright

for B

cells, TdT for developing thymocytes), and biotinylated horse anti-rabbit secondary antibody and

avidin (Vector Labs, Burlingame CA). High levels of SLP-2 expression were detected in the

germinal centres (B cell area) of lymph nodes of non-specific B cell adenitis, in the paracortical

(T cell) area of non-specific T cell adenitis, and in the cortex of the thymus. Much lower

expression of SLP-2 was seen in cells outside these areas. The profile of intracellular

localization of SLP-2 was predominantly associated to the periphery of the cell and some

aggregates in the central area of the cytoplasm. C) Human peripheral blood T cells were

stimulated with syngeneic APC and SEE for 36 hours. Cell lysates were prepared and

immunoblotted for SLP-2 and �-actin (as a loading control). Results are representative of three

independent experiments. D) Human tonsil cells were fractionated through Percoll gradient and

lysates from the four fractions were immunoblotted for SLP-2 and �-actin. B cell markers for

naïve and activated memory B cells were used to determine the percentage of naïve and activated

memory B cells in each fraction (shown in the table). Results are representative of two

independent experiments.
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Figure 2.- Localization of SLP-2 in T cells during activation. A) Intracellular and membrane-

associated distribution of SLP-2-gfp in resting Jurkat cells. Stable, doxycycline-inducible, SLP-

2-gfp-transfected E6.1 Jurkat T cells were examined by confocal microscopy. A low

magnification of the field is shown to document that the high magnification pictures are

representative of the T cell population. B) SLP-2 polarizes to the immunological synapse during

activation of T cells. Stable SLP-2-gfp-transfected E6.1 Jurkat T cells were stimulated with APC

and SEE, and examined under confocal microscope for the formation of synapses (identified as

CD3 red clusters at the interface between T cell and APC). Images are representative of at least

50 putative immunological synapses. Concomitant studies done with control transfected T cells

demonstrated that expression of SLP-2-gfp did not interfere with immunological synapse

formation. Location of SLP-2-gfp as predominantly proximal to the IS, predominantly distal to

the IS, or diffuse was quantified at 0 and 30 minutes of stimulation. C) SLP-2 redistributes to the

periphery of the IS during T cell activation. Videomicroscopy capture of SLP-2-gfp during IS

formation. The figures shown here were obtained at the indicated time periods. The video is

available as supplementary data.

Figure 3.- Redistribution of plasma membrane-associated SLP-2 by TIRF (A) and

mitochondrial membrane-associated SLP-2 (B and C) during immunological synapse

formation. A) Membrane-associated SLP-2 segregates from TCR microclusters at early and late

timepoints. Jurkat T cells stably expressing SLP2-gfp were treated with doxycycline 12 hrs prior

to imaging, then incubated on bilayers containing ICAM1-cy5 and anti-human CD3 (OKT3) and

imaged for 30 min. IRM and TCR images were obtained by wide-field fluorescence

microscopy. SLP2-gfp was imaged using total internal reflection fluorescence microscopy
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(TIRFM). Images were exposed for no longer than 900 ms with no greater than 15 �W of laser

power. B) The intracellular SLP-2 pool organize into the periphery of the immunological

synapse. Jurkat T cells stably transfected with SLP-2-gfp were incubated on bilayers containing

ICAM-1 and anti-human CD3 (OKT3) and then imaged at 3 min and 30 min. Images shown

were obtained by wide field fluorescence microscopy. The bright field images show the cells

being imaged, the IRM images show contact with the bilayer as dark areas, and the TCR, ICAM-

1 and SLP-2-gfp fluorescence channels are shown in gray scale and two red-green merges (green

is always SLP-2). The dotted lines in the ICAM-1 pictures represent, from the periphery to the

centre of the picture, the outer boundaries of the distal SMAC, of the pSMAC, and of the

cSMAC. Images are representative 3 separate experiments. The video is available as

supplementary data. C) The intracellular SLP-2 pool imaged by wide field localizes to the

mitochondria of Jurkat T cells. Jurkat T Cells stably expressing SLP2-gfp were electroporated

with the mitochondria-labeling mtRFP plasmid 12 hours before imaging. They were then

incubated on bilayers containing ICAM-1 and anti-human CD3 (OKT3) and imaged at the

indicated times. Images were obtained by wide-field fluorescence microscopy, and are

representative of three separate experiments. The dotted lines in the ICAM-1 pictures represent,

from the periphery to the centre of the picture, the outer boundaries of the distal SMAC, of the

pSMAC, and of the cSMAC.

Figure 4.- Stable redistribution of SLP-2 during T cell activation and to membrane lipid

rafts. Stable distribution of SLP-2 during T cell stimulation. Recovery from photobleaching in

resting and activated stable SLP-2-gfp transfected T cells was measured during a 400 second

window. Top graph illustrates recovery in resting T cells and bottom graph represents the profile
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of recovery in activated T cells. Results are presented as mean ± S.D. of three different FRAP

experiments. The video is available as supplementary data.

Figure 5.- Association of SLP-2 with components of the TCR signalosome and peripheral

cytoskeleton during T cell activation. Jurkat T cells were stimulated with LG2 (as APC) and

SEE for the indicated time. A) and C) SLP2 or pre-immune serum immunoprecipitates (lane

‘C’) (ip) with cross-linked antibody were sequentially immunoblotted for the indicated

molecules and reblotted for SLP-2. B) LFA-1 immunoprecipitates were sequentially blotted for

LFA-1 and for SLP-2. The amount of SLP-2 normalized to the amount of LFA was determined

by densitometry. D) Inhibition of actin polymerization disrupts the association between SLP-2

and �-actin. E6.1 Jurkat T cells pretreated with cytochalasin D (10 �M) for 30 minutes were

stimulated with APC and SEE for the indicated times. Whole cell lysates were prepared and

used for immunoprecipitation of SLP-2 and immunoblotted for �-actin. Supernatants from 24

hour cultures of these T cells with APC and SEE were used to measure IL-2 production. Blots in

these figure are representative of at least 4 separate experiments.

Figure 6.- Modulation of SLP-2 expression regulates T cell activation. A) Formation of

immunological synapses by SLP-2-deficient (SLP-2 siRNA group) Jurkat T cells stimulated with

APC and SEE for 30 min. IS were defined as clusters of CD3 in the T:APC interface. IS

formation was quantified in the T:APC cultures for SLP-2 –deficient T cells (SLP-2 siRNA) and

control groups, on three groups of 30 cell doublets each (**: p<0.01). An example of synapse-

forming, SLP-2 siRNA-treated T cell is shown in #1 while #2 shows an example of a SLP-2

siRNA treated T cells failing to form a synapse. B) Jurkat T cells were nucleofected with
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siRNA for SLP-2 or control siRNA and used for stimulation with APC and SEE for the indicated

times. Cell lysates were prepared and immunoblotted for dually phosphorylated, active ERK-1/-

2 and total ERK-1/-2. Signals for activated ERK-1/-2 and total ERK were quantified for each

group at the indicated time points for three independent experiments and plotted as normalized

densitometric units for activated ERK-1/-2.  *: p<0.05, **: p<0.01.

Figure 7.- Modulation of SLP-2 expression regulates T cell activation. A) SLP-2 over-

expression in Jurkat T cells was induced in stable transfectants for an inducible SLP-2-gfp cDNA

with doxycycline. Down-regulation of SLP-2 levels in Jurkat T cells was done by siRNA. The

response of these cells to APC and SEE was measured by IL-2 production. Expression of SLP-2-

gfp was confirmed by FACS and knockdown of SLP-2 after siRNA was confirmed by Western

blotting. B) Peripheral blood lymphocytes from a normal volunteer were isolated and used as

resting cells, or after three days of ex vivo activation with PMA and ionomycin and 48hr of

resting. Cells were nucleofected with SLP-2 siRNA or gfp control and used 24 hours later for

stimulation with autologous APC and SEE. IL-2 production after 24 hours was assessed by

ELISA. Additional control of cells nucleofected without any DNA was used to rule out non-

specific effect of nucleofection. Inlet figure shows Western blot for SLP-2 to confirm

knockdown of SLP-2, and �-actin as a loading control in the two groups tested. Similar results

were obtained in 4 separate experiments. ***: p<0.001.
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SUPPLEMENTAL FIGURE LEGENDS

Supplemental figure 1.- SLP-2 expression in human peripheral blood mononuclear cells

(PBMC) of a healthy volunteer. Peripheral blood cells from an individual in whom low levels

of expression of SLP-2 in PBMC were detected under resting conditions was used in this

experiment to document expression of SLP-2 in different subsets of PBMC. T: T cells; B: B

cells; M: monocytes.

Supplemental figure 1.- SLP-2 expression in human peripheral blood mononuclear cells

(PBMC) of a healthy volunteer. Peripheral blood cells from an individual in whom low levels

of expression of SLP-2 in PBMC were detected under resting conditions was used in this

experiment to document expression of SLP-2 in different subsets of PBMC. T: T cells; B: B

cells; M: monocytes.

Supplemental figure 3.- Compartmentalization of SLP-2 in human T cells. Lysates from

intracellular compartments prepared from peripheral blood T cells by sequential solubilization

and centrifugation were immunoblotted for SLP-2 and controls for each intracellular

compartment.

Supplemental figure 4.- Increased relocation of SLP-2 into lipid rafts with TCR-dependent

T cell activation. E6.1 Jurkat T cells were activated with APC and SEE for the indicated times.

Membrane lipid rafts and the detergent-soluble fraction were isolated by sucrose gradient

centrifugation and immunoblotted for SLP-2, ERK-1/-2 (as control for the quality of the

detergent-soluble fraction), and GM-1 (as a control for the quality of lipid rafts). The SLP-2
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signal (mean ± S.D.) for lipid raft fractions from T cells activated for different times in three

experiments was quantified by densitometry.

Supplemental figure 5.- Interaction between SLP-2 and the CD3e chain of the TCR

complex on Jurkat T cells. T cells (27x10
6

cells/group) were used to immunoprecipitate SLP-2

or CD3e using cross-linked antibodies. Immunoprecipitates (ip) and control whole T cell lysates

(from 1.5x10
6

cells) were blotted for either SLP-2 or CD3e and signals quantified by

densitometry. The amount of SLP-2 associated to CD3e represented 0.09% of total SLP-2 levels

in the cell.

Supplemental figure 6.- Interaction between SLP-2 and cell surface receptors on Jurkat T

cells. Jurkat T cells stably transfected for wild type SLP-2-gfp or for a SLP-2-gfp lacking the N

terminus (aa 1 to 77) were biotinylated. Next, biotinylated receptors were immunoprecipitated

with an antibody against biotin or with beads alone as control, and immunoblotted for SLP-2.

Whole cell lysates from the transfectants were used to control for expression of the transgenes.

Only SLP-2-gfp and endogenous SLP-2 interacts with surface receptors, while the mutant SLP-2

without the membrane targeting N terminus does not. Note that Jurkat T cells express

endogenous SLP-2 in addition to the transfected form.

Supplemental figure 7.- Down-regulation of SLP-2 does not affect IL-2 response to

mitogenic stimulation with PMA and ionomycin. Peripheral blood lymphocytes from the

experiment shown in figure 7B were used after three days of ex vivo activation and 48hr of

resting. Cells were nucleofected with SLP-2 siRNA and used 24 hours later for stimulation with
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PMA and ionomycin. IL-2 production after 24 hours was assessed by ELISA. Cells

nucleofected without any DNA or with non-sense siRNA were used as controls. The effect of

SLP-2 siRNA on SLP-2 levels are shown in right panel of figure 7B.
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SUPPLEMENTAL VIDEO LEGENDS

Supplemental video 1.- Localization of SLP-2 during IS formation. Antigen presenting cells

(APCs) were incubated overnight with SEE (1 �g/ml), washed, resuspended in medium, and

incubated on polylysine-coated glass bottom microwell dishes for 10 minutes to allow cells to

adhere. SLP-2-gfp-expressing Jurkat T cells were added to the APCs preincubated with SEE on

the polylysine-coated microwell dishes. Once T:APC doublet was identified, images were

acquired every 30 seconds for 60 minutes. The majority of SLP-2-gfp localized proximal to the

synapse and distributed evenly in early stages, and as the IS matures SLP-2-gfp moved to

periphery of the synapse.

Supplemental videos 2A and 2B.- SLP2 organizes into a peripheral ring in Jurkat Cells on

planar bilayers containing anti-human CD3 + ICAM-1 but not on bilayers containing

ICAM-1 alone. Jurkat T cells were incubated on bilayers containing ICAM-1 and anti-human

CD3 (OKT3) (A) or ICAM-1 alone (B) and imaged by wide-field fluorescence microscopy from

1-40 minutes after the cells were applied.

Supplemental videos 3A and 3B.- Stability of SLP-2 clusters during T cell activation. Jurkat

T cells stably expressing SLP-2-gfp were incubated on polylysine-coated glass bottom microwell

dishes for 10 minutes to allow cells to adhere. Adherent Jurkat T cells were then stimulated with

OKT3 (1 μg/ml) for 15 minutes. Non-stimulated (A) or stimulated (B) SLP-2-gfp expressing

Jurkat T cells were then placed under confocal microscope. Forty images were acquired over a

375 seconds, with three images acquired before photobleaching. Area of cell indicated by arrow

was photobleached using 100 % of laser power for 3 seconds and the movement of SLP-2-gfp
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back into photobleached area was measured. Note that, in the stimulated T cell, it corresponds to

an area with SLP-2-gfp clusters. Stimulated Jurkat T cells show little to no recovery of gfp

signal in photobleached area, while non-stimulated cells show significant recovery of SLP-2-gfp

in photobleached area within the examined time window.
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Table 1: Segregation of mitochondrial SLP2-gfp from the cSMAC in the mature IS,
by wide field fluorescence microscopy

Segregation No Segregation
25/29 (86.2%) 4/29 (13.8%)

Only cells forming IRM contacts for 3 or more data points were considered.  Images of each field were

taken at 2-3 minute intervals. Data is representative of 3 experiments.
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Table 2: Percentage of Jurkat T cells on supported planar bilayers organizing
SLP2-gfp close to pSMACs at the contact interface by wide field fluorescence

microscopy
Peripheral ring No peripheral ring

10 μg/mL OKT3 + 300 mol/μm2 ICAM-1 291 8
300 mol/μm2 ICAM-1 only 0 29

1p < 0.0001 vs. ICAM-1 only
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Kirchhof et al: Figure 4
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**

CD3 Overlay

-SEE
+ Ctrl siRNA

-SEE
+ SLP-2 siRNA

+SEE
+ Ctrl siRNA

+SEE
+ SLP-2 siRNA

# 1

+SEE
+ SLP-2 siRNA

# 2

A

0 2 5 10 30

**

Time (min):

*

B

A
ct

iv
e 

ER
K

R
el

at
iv

e 
D

en
si

to
m

et
ric

 U
ni

ts

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
06

8.
1 

: P
os

te
d 

21
 S

ep
 2

00
7



Kirchhof et al: Figure 7
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