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Abstract Logic regression has been recognized as a tool that can identify and model 

non-additive  genetic  interactions  using  Boolean  logic  groups.  Logic  regression, 

TASSEL-GLM  and  SAS-GLM  were  compared  for  analytical  precision  using  a 

previously  characterized  model  system to  identify  the  best  genetic  model  explaining 

epistatic interaction of vernalization-sensitivity in barley. A genetic model containing two 

molecular markers identified in vernalization response in barley was selected using logic 

regression while both TASSEL-GLM and SAS-GLM included spurious associations in 

their  models.  The  results  also  suggest  the  logic  regression  can  be  used  to  identify 

dominant/recessive relationships between epistatic alleles through its use of conjugate 

operators.

Introduction

Recent concerns about potential loss of genetic variation in our crop plants (Yu and 

Bernardo 2004) make it important to understand genetic modeling in an attempt to 

correctly measure levels of variation within elite breeding germplasm. Unfortunately 

traditional techniques in genetic modeling are thought to underestimate many forms of 

epistasis (Solomon et al. 2007), which in outcrossing species, is thought to play a 

significant role in the maintenance of genetic diversity under potential bottleneck 

conditions as those encountered during advanced stages in the breeding cycle (Yu and 

Bernardo 2004). In addition, epistatic interactions have been long thought to play a vital 
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role in the evolutionary diversification of species (Wright 1931; Orr 1995). Epistatic 

interaction of the Arabidopsis FRI and FLC flowering time genes is indicated to 

determine the generation of a latitude cline in the species (Caicedo et al. 2004). 

Furthermore, quantitative trait loci (QTL) analysis identified epistatic interactions that 

resulted in natural phenotypic variation in Arabidopsis, Drosophila and Caenorhabditis  

elegans (Shook and Johnson 1999; Dilda and Mackay 2002; Ungerer et al. 2002; Weinig 

et al. 2003). Unfortunately, modern statistical analyses to identify higher-order epistatic 

interactions are not trivial (Hahn et al. 2003; Blanc et al. 2006; Millstein et al. 2006) and 

there are numerous fundamental methodological issues that need to be addressed before 

significant gains in genetic modeling of epistasis are realized (Solomon et al. 2007).

Detection of gene x gene interactions can be accomplished using parametric or 

non-parametric methods. Parametric methods use a genetic model to describe the genetic 

effects of each marker on the measured phenotype which provides information on the 

mean and variance components of the trait used in statistical inference of the genetic 

model parameters. Importantly, when the assumptions of linear modeling are violated (as 

is often the case in real world data), careful analysis is warranted to determine whether 

these violations compromise the validity of the parametric test and their results. 

Non-parametric methods utilize data mining approaches in the detection of 

disease susceptibility genes involved in epistatic interactions (Solomon et al. 2007). Data 

mining has been defined as the nontrivial extraction of implicit, previously unknown, and 

potentially useful information from data (Bradley 1968). In non-parametric methods, the 

genetic model is not specified a priori as it is not known (Solomon et al. 2007), instead 

the model is determined from the data. Therefore, non-parametric methods are more 

powerful if the genetic model is unknown and they are less burdened by assumptions 

about the parameter in the probability density function (Solomon et al. 2007). Recent 

interest in non-parametric methods of data analysis, for use in discovering gene x gene 
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interactions, has generated much interest, due in part, to the increased flexibility and their 

ability to handle high-dimensional data such as SNP (Solomon et al. 2007). By 

investigating novel modeling paradigms, it is hoped that we can better understand and 

model epistasis within a quantitative genetics framework.

Recent  advances  adaptive  regression  methodologies  have  been  developed  to 

explore high-order  interactions in genomic data. One such technique, logic regression 

(Kooperberg  et  al.  2001;  Ruczinski  et  al.  2003;  Ruczinski  et  al.  2004),  utilizes  a 

simulated  annealing  algorithm  in  a  data  reduction  framework  to  identify  statistical 

models for binary data sets. Logic regression constructs models consisting of Boolean 

combinations  of  binary  covariates  (Ruczinski  et  al.  2004).  With  X1…Xk as  binary 

predictors and Y as the response, logic regression will fit regression models in the form 

g(E[Y]) =  0β +  ∑
=

t

j
jj L

1

β ,  where  jL  is  a  Boolean  expression  of  the  predictors  Xi 

(Ruczinski et al. 2004). These are collectively called logic models. In evaluating models 

of varying sizes, logic regression identifies signal vs. noise in the data set. In statistical 

modeling, signal is identified by asking whether the slope (b) is equal to zero or not equal 

to  zero  (Ruczinski  2007).  Signal  is  when  X is  associated  with  Y.  When  additional 

covariates  not  associated  with  Y are  added  to  the  model,  this  is  considered  noise 

(Ruczinski 2007). By evaluating models of various sizes for signal vs. noise, researchers 

can  determine  the  level  of  over-fitting  (noise)  in  each  model-size  class.  In  addition, 

potentially troublesome data sets where there are unacceptable levels of noise are quickly 

identified so that no further time is wasted in the analysis of these problematic data.

Logic regression was designed as a  tree-based Boolean expression  search  and 

reduction  algorithm,  which  constructs  logic  models  where  the  binary  predictors  are 

modeled using a subset of permissible rules (moves) with logical operators (Ruczinski et 

al. 2004). Terminal  knots (locations of elements in logic trees),  which are not further 
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subdivided, are called leaves (Ruczinski et al. 2004). Logic regression offers numerous 

scoring  functions  for  linear  regression  (residual  sums  of  square),  logistic  regression 

(deviance),  classification  (misclassification)  and  proportional  hazards  models  (partial 

likelihood)  (Ruczinski  et  al.  2004).  In  addition,  the  statistical  procedure  allows  for 

inclusion  of  binary  or  non-binary  additive  predictors  in  the  model.  Furthermore,  by 

creating statistical models consisting of Boolean combinations of binary covariates, this 

methodology  shows  promise  in  the  identification  of  dominant  forms  of  epistatic 

interactions between molecular markers. Although logic regression has been identified as 

a parametric method (Solomon et al. 2007), one can argue that it is a combined approach, 

which utilizes non-parametric, logic trees in a linear regression framework. This small, 

but important distinction may offer the ‘best of both worlds’ approach for identifying 

gene x gene interaction, which will be discussed later in this paper.  

Epistasis  among the  alleles  at  the  VRN-H1,  VRN-H2 and  VRN-H3 loci  is  the 

hypothesized  determinant  for  vernalization-sensitivity  in  cultivated  barley  (Hordeum 

vulgare subsp.  vulgare) (Takahashi and Yasuda 1971).  There is no allelic variation at 

VRN-H3 in most cultivated barley genotypes, reducing the genetic model to a two-locus 

epistatic model (Takahashi and Yasuda 1971).  VRN-H2 encodes a dominant flowering 

repressor  (ZCCT-H) down-regulated by vernalization (Yan et al.  2004).  VRN-H1 is a 

MADS-box  floral meristem identity gene (HvBM5A) (Danyluk et al. 2003; Yan et al. 

2003) and large deletions within the first intron result in a dominant VRN-H1 allele and 

spring growth habit (Fu et al. 2005; von Zitzewitz et al. 2005). A molecular model has 

been  recently  proposed  to  explain  the  VRN-H2/VRN-H1 epistatic  interaction  where 

dominant VRN-H2 inhibits the expression of recessive VRN-H1 alleles (Yan et al. 2004). 

Based  on  this  model,  genotypes  with  VRN-H2_/vrn-H1vrn-H1/vrn-H3vrn-H3 allelic 

architecture flower late in the absence of vernalization (vernalization-sensitive) and all 

other  allelic  configurations  lead to  a  lack of significant vernalization-sensitivity.  This 
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well-validated epistatic interaction (Sz cs et al. 2007) ű was used as a model system to test 

the ability of logic regression in identifying epistasis in binary molecular data.

The objective of this work was to determine if logic regression can be used to 

identify the interaction between molecular markers associated with the days to flowering 

phenotype in barley with little or no spurious associations by comparing logic regression 

with traditional linear-modeling techniques. In addition, we wanted to determine logic 

regression’s capabilities at identifying spurious associations using a linkage decay series. 

Materials and methods

Plant material, phenotype and data set

‘Dicktoo’ (vrn-H2vrn-H2/vrn-H1vrn-H1), ‘Calicuchima’-sib (Vrn-H2Vrn-H2/Vrn-

H1Vrn-H1) and the ‘Oregon Wolf Barley Dominant’ genetic stock (hereafter referred to 

as ‘OWB-D’) (Vrn-H2Vrn-H2/Vrn-H1Vrn-H1) are vernalization-insensitive barley 

genotypes (Sz cs et al. 2007ű ). ‘Dicktoo’ was crossed with ‘Calicuchima’-sib and ‘OWB-

D’ and two F2 populations were established (Sz cs et al. 2007ű ). Flowering time was 

measured for all unvernalized F2 plants grown under long-day greenhouse conditions 

with supplemental lighting and constant temperature (Sz cs et al. 2007ű ). Previously 

reported gene-specific primers were used to assign VRN-H2 and VRN-H1 allele-types for 

each F2 individual (Sz cs et al. 2007ű ). We sequenced the recently cloned VRN-H3 gene 

(Yan et al. 2006) from the three parents and confirmed that ‘Calicuchima’-sib 

(EU007825), ‘Dicktoo’ (EU007827), and ‘OWB-D’ (EU007829) contains the recessive 

allele.

VRN-H1 and VRN-H2 molecular markers were coded as binary. Heterozygotes 

were bulked with the homozygous dominants and scored as 1 while the homozygous 
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recessives were scored as 0. In addition to the actual molecular markers, VRN-H1 and 

VRN-H2, we created 100 randomized binary markers (simulated data) for a total of 102 

binary markers.

Logic regression analysis

To test the null hypothesis that logic regression cannot identify epistasis amongst 

vernalization in barley, the datasets from the two F2 populations were modeled with logic 

regression in the statistical software R (R Foundation for Statistical Computing, Vienna, 

Austria) using the linear regression scoring function (Kooperberg and Ruczinski 2005). 

Day’s to flowering was used as the continuous response variable and the molecular 

marker data were used as binary predictors. Initially, logic regression was allowed to 

choose the high and low temperatures for the simulated annealing algorithm using a 

single-fit selection with one tree. Once the program chose the annealing algorithm 

parameters, the high and low temperatures were optimized according to the author’s 

instructions (Kooperberg and Ruczinski 2005) for selection of a single-fit model. After 

analyzing the single-fit model data, multiple-fit model selection was performed for use in 

model selection. When the results warranted further investigation, we performed null 

model tests to test for statistical signal vs. noise in the data. Upon verification of a strong 

statistical signal with little noise, we ran a cross-validation test to identify the logic trees 

with the best predictive capability. In the final step, permutation tests were run to confirm 

the results of the search algorithm so that we could positively identify the best model that 

describes the association between predictors and response.

TASSEL analysis 
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The two F2 datasets were analyzed using the association mapping software TASSEL-

GLM (Trait Analysis by Association Evolution and Linkage) (Zhang et al. 2006). The 

binary-coded, two vernalization markers and the 100 randomly generated markers were 

imported into TASSEL along with the phenotypic data. A population structure Q-matrix 

was designed with all 1’s to suggest a single population for our data effectively removing 

that predictor from the model. The general linear model function was selected for 

analysis.

SAS-GLM

Analysis of variance was performed on both F2 datasets using the general linear model 

(GLM) of SAS Version 9.1 (SAS Institute, Cary, NC). The individual markers which 

were identified as being significantly associated with the phenotype in TASSEL were 

analyzed in SAS using a type III fixed effects model analysis to confirm the single 

marker association results in TASSEL. A type III fixed effects full model containing all 

the significantly associated markers was performed in SAS to identify marker 

interactions.

Linkage decay data

Spurious associations between trait and randomly generated markers were tested with 

logic regression using a linkage decay series to determine the point at which logic 

regression could no longer make valid associations between truly linked markers and 

random noise. Two randomly generated sets of linkage decay markers were created each 

set based upon one of the F2 populations in our study. Both sets of linkage decay markers 

had 90%, 80%, 70%... 0% similarity to VRN-H1. Our goal was to create randomly 
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generated markers that would decay in a predictable pattern as the signal in the data 

became progressively weaker as the similarity to the original vernalization marker 

decreased (Fig. 1). The decay series data was created by randomly changing 10% of the 

1’s to zeros and, thereby, using this new linkage decay marker as the basis for creating 

the next marker in the decay series. Original VRN-H1 and VRN-H2 markers were 

removed from the analysis as they interfered with the analysis of the decay series due to 

their strength of association with the phenotype. This procedure created a linkage decay 

series where the model association became progressively weaker as the linkage to the 

phenotype decayed resulting in a smooth logarithmic response (Fig. 1).

Results

VRN-H1/VRN-H2 model selection 

Logic  regression  correctly  identified  the  genetic  model  explaining  the  epistatic 

interaction of the vernalization alleles in data sets for both crosses. The search resulted in 

a model with a score (residual sums of square) of 12.47 and the equation [+74.9 * (VRN-

H2 and (not  VRN-H1))] for the in the ‘Dicktoo’ x ‘Calicuchima’-sib data and a model 

score 8.83 and the equations [+85.4 * (VRNH2 and (not  VRNH1))] for the ‘Dicktoo’ x 

‘OWB-D’ data. The single-fit model searches were repeated 100 times and it was found 

that the scores (Fig. 1) and the coefficients of the selected models never changed. The 

conjugate form of the model for each data set, e.g. [-85.4 * (VRNH1 or (not VRNH2))], 

were also chosen during the search, however the conjugate forms of the models are equal.

In addition, the null model tests suggested that there was a strong signal in the 

data with very little noise because 0% of the model scores were better than the best score 

(Supplementary  Table  1  online). The  cross-validation  and  the  1000-randomization 
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permutation tests on the multiple-fit model analyses for the two data sets confirmed the 

results of the single-fit model search. Tests indicated the optimum model to be model two 

with one tree and two leaves as it had the lowest cross-validation test average (Fig. 2). 

Further, the permutation tests on the two data sets identified the same model with one 

tree and two leaves as being the optimum sized and correct model for the data set as that 

was the point where the mean of the randomization scores stopped decreasing as the 

model size increased (Supplementary Table 2 online). 

TASSEL analysis

TASSEL-GLM results showed VRN-H1 and VRN-H2 as being associated with the days to 

flowering phenotype in the ‘Dicktoo’ x ‘Calicuchima’-sib and ‘Dicktoo’ x ‘OWB-D’ data 

(Table 1). TASSEL-GLM also identified the randomly generated marker RANDOM 70 

as  being  associated  with  the  days  to  flowering  phenotype  in  the  ‘Dicktoo’  x 

‘Calicuchima’-sib data and randomly generated markers RANDOM 46 and RANDOM 

58 as being associated with the phenotype in the ‘Dicktoo’ x ‘OWB-D’ data (Table 1).

SAS general linear model analysis of variance

The type III fixed effects full model for the ‘Dicktoo’ x ‘Calicuchima’-sib data revealed a 

significant  interaction  between  VRN-H1 and  VRN-H2,  but  there  were  no  significant 

singular effects or interactions with the randomly generated marker RANDOM 70 (Table 

2). The type III fixed effects full model for the ‘Dicktoo’ x ‘OWB-D’ data revealed a 

significant  interaction  between  VRN-H1 and  VRN-H2,  but  there  were  no  significant 

singular effects with either marker RANDOM 46 or marker RANDOM 58 (Table 3). A 

spurious interaction between  VRN-H1 and RANDOM 58 was identified using the Proc 
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GLM procedure in SAS (Table 3).

Linkage decay 

Linkage decay results for the two data sets showed they were quite different in how they 

responded  in  a  controlled  decay  simulation.  The  ‘Dicktoo’  x  ‘Calicuchima’-sib  data 

showed  less  overall  variation  in  single-fit  model  scores  when  compared  with  the 

‘Dicktoo’  x  ‘OWB-D’  data  (Fig.  1  and  3).  Closer  examination  of  the  ‘Dicktoo’  x 

‘Calicuchima’-sib data revealed a large increase in variation (CV) within the single-fit 

model selection scores when linkage decay reached 40% similar to  VRN-H1 (Fig. 3), 

which corresponded where logic regression could no longer distinguish between linkage 

decay markers and the simulated markers. Also, there were large variations in the single-

fit model scores for VRN-H2 over multiple runs, which resulted in extremely large CVs 

(Fig. 3).

Stable  single-fit  regression  model  was  only identified  when  both  the  markers 

appeared in the data set (Fig. 1). Furthermore, large increases in the CV were observed 

when  VRN-H1  was  modeled  in  the  linkage  decay  series  (Fig.  3).  The  ‘Dicktoo’  x 

‘Calicuchima’-sib data up to 40% similar to  VRN-H1 (the point where logic regression 

could no longer distinguish between decay and dummy markers) had CVs of less than 

6% (Fig. 3).

Discussion

Logic regression correctly identified the associated vernalization markers and what’s 

more remarkable is that the model explained the epistasis as a dominant/recessive 

interaction. Vernalization response in barley is hypothesized to be an interaction where 
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dominant VRN-H2 inhibits the expression of recessive VRN-H1 alleles (Yan et al. 2004). 

Because a dominant/suppression form of epistasis has been hypothesized to govern 

vernalization response in barley, we suggest that logic regression correctly identified this 

proposed genetic model. Numerous QTL and genic studies have identified multiple loci 

involved in the expression of a single trait (Calborg and Haley 2004). In addition, interval 

mapping and composite interval mapping have been used successfully to identify QTL 

associated with specific phenotypes that led to the identification of statistically significant 

interactions (Shook and Johnson 1999; Lefebvre et al 2003; Ma et al. 2006). However, in 

all these cases, additional studies were required to ascertain the actual genetic model 

defining the interaction of the various loci. The use of logic regression appears to address 

both problems simultaneously. 

Identification of epistatic interaction using linear modeling refers to a deviation 

from additive effects of alleles at different loci as a contribution to the quantitative 

phenotype (Fischer 1918). This definition leads one to conclude whatever is not additive 

is therefore epistatic. In addition, it has been reported that linear regression methods are 

ineffective in pure epistatic models, which have simple main effects and antagonistic 

epistasis with zero marginal main effects (Solomon et al. 2007). Therefore, traditional 

linear modeling has limitations in its ability to identify some forms of genetic interaction. 

Furthermore, there are often difficulties separating out the epistatic variances from 

additive and dominance (Yu and Bernardo 2004) making estimates of epistatic variances 

difficult to the point that it was suggested that a non-significant epistatic variance does 

not suggest an absence of epistasis (Yu and Bernardo 2004). This can be especially true 

when trying to identify potential epistasis in a large outcrossing population.

Epistasis was originally described as a masking effect where a ‘variant’ (allele) at 

one locus prevents  the variant  at  the other locus from manifesting an effect (Bateson 

1909). Cordell (2002) suggests epistasis has been confused by the fact that we have two 
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uniquely different definitions for epistasis and unfortunately, there is no correspondence 

between biological models and those that are statistically motivated (Cordell 2002), or is 

there?  Although  logic  regression  has  been  reported  to  be  a  parametric  method  of 

modeling (Solomon et al. 2007), it uses tree-based logic methods in its analysis. These 

tree-based methods are ideally suited for identification of dominant forms of epistasis. 

Indeed,  our  results  clearly  show that  logic  regression  outperformed  traditional  linear 

methods in the simple main effect/synergistic epistasis (Solomon et al. 2007) found in 

barley vernalization response. In addition, to our surprise, logic regression also identified 

the  precise  genetic  model  explaining the vernalization  response  in  barley.  Therefore, 

although Cordell (2002) suggested there is no correspondence between biological models 

and those that are statistically motivated, we provide evidence showing logic regression 

can indeed bridge that gap. Remember, in a diallelic system, there are four ways in which 

the  alleles  can  interact:  dominance  x  dominance,  additive  x  additive,  dominance  x 

additive  and  additive  x  dominance.  This  suggests  that  in  certain  instances,  linear 

modeling  falls  short  in  the  identification  of  epistasis  while  in  other  instances  non-

parametric methods fall short. In fact, we are told that there is currently no single method 

that is recognized as the ‘best’ for detecting, characterizing and interpreting gene x gene 

interactions  and  suggest  that  real  breakthroughs  will  be  realized  when  combined 

methodologies are used (Solomon et al. 2007). Our analysis suggests logic regression to 

be a combined system, which bridges the gap between parametric and non-parametric 

methods.    

Although logic regression appears to have many strong points, there are some 

limitations inherent in the program. First, the program handles binary data for markers. 

This means identified interactions are limited to those with dominant interaction. Another 

limitation is that logic regression is a fixed-effects model and therefore is limited in its 

usefulness in estimating QTL effect. Until recently, there was no method for deriving 
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additive genetic effects from dominant markers (Hardy 2003). Therefore, there was no 

way to  reliably  estimate  the  effect  of  a  QTL identified using dominant  markers  like 

AFLP.  With  the  recent  advances  in  F-statistic  theory  (Hardy  2003)  and  Bayesian 

inference (Holsinger et al. 2002) for use with dominant markers, it is now possible to use 

dominant-scored DNA data sets such as AFLP in a mixed-model analysis.

New modeling strategies  utilizing Bayesian model  choice (Yi et  al.  2003;  Xu 

2007) and connected designs (Blanc et al. 2006) search for interactive quantitative trait 

loci have been proposed for mapping epistasis.  These new methods show promise in 

analyzing QTL data  and interactions  by BLUP (Best  Linear  Unbiased  Prediction)  in 

random  effects  models  to  estimate  epistatic  effects.  Unfortunately,  Bayesian  model 

choice was limited to just the estimation of the epistatic effects and was not used for 

variable selection (Xu 2007). However, the model was used to derive an accurate BLUP 

for  the  epistatic  effect,  which  can  be  used,  ultimately,  to  derive  the  proportion  of 

phenotypic  variance  explained  by  an  effect  of  a  QTL  (h2).  The  connected  design, 

although promising, is computationally complex involving numerous ‘connected’ models 

with the final results going through a FDA (false discovery rate; Storey and Tibshirani 

2003) analysis for significance testing (Blanc et al. 2006). Although these methods are 

extensible for handling complex models containing additive-by-dominance, dominance-

by-additive  and  dominance-by-dominance  interactions,  they  cannot  yet  identify  the 

precise  genetic  model  governing  epistasis,  which  includes  the  dominant/recessive 

relationships  among  alleles.  In  addition,  it  is  unclear  how  many  potentially  useful 

interactions might be missed because of Type I and Type II errors resulting from the 

limitations  of  linear  modeling.  In  contrast,  logic  regression  has  shown  promise  in 

elucidating  the  precise  genetic  model  through  the  use  of  Boolean  logic  groups  with 

conjugate  (recessive)  forms  of  the markers.  Recently,  logic  regression  was shown to 

outperform mixed and other forms of modeling in simulated data trials (Ruczinski et al. 
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2003). However, it remains unclear as to whether Bayesian model choice and connected 

designs outperform the combined use of logic trees and data reduction via the simulated 

annealing algorithm.

Recently, two new Bayesian logic regression packages have been developed for 

use with high-dimensional SNP data (Clark et al. 2007; Fritsch and Ickstadt 2007). These 

methods show promise in their ability to use prior information in the logic regression 

framework. The method by Clark et al. (2007) allows for the inclusion of population 

genetics information  in  the  model,  unfortunately,  this  method allows for  only binary 

response  data  and  the  search  algorithm  is  constrained  to  logic  trees  consistent  with 

perfect phylogeny. The full Bayesian method developed by Fritsch and Ickstadt (2007) 

also has some limitations. Their version allows for only the inclusion of binary response 

and binary predictors with model selection being limited to those models where SNP 

interactions fall within known biological pathways. However,  it  should be possible to 

construct a full Bayesian logic regression which would work for continuous response 

variables with the inclusion of non-binary predictors such as population structure and 

kinship  coefficient  (Q-matrix  and  K-matrix)  data.  This  would  extend  the  use  of  this 

powerful  technique  to  traits  shown to be  continuous and would also  take population 

stratification  and  relatedness  into  account.  It  is  widely  accepted  that  population 

structure/stratification  and  relatedness  among  individuals  can  lead  to  spurious 

associations (associations without linkage) between a candidate marker and phenotype 

(Lander and Schork 1994; Bacanu et al. 2000; Pritchard et al. 2000a,b; Devlin et al. 2001; 

Yu et  al.  2006) and that  this  type of structure  needs to be accounted for  in the data 

analysis. 

 Modeling linkage decay helped demonstrate  the power  of logic regression  to 

accurately  model  data  sets  where  linkage  between  markers  may  be  incomplete  or 

spurious.  The coefficient of variation (CV) is  a dimensionless value used to quantify 
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uncontrolled experimental error. The coefficient of variation results suggest there were 

measurable  differences  between  the  two  crosses,  however,  this  data  alone  does  not 

provide any diagnostic information about acceptable levels of variation within the data 

sets. However, when the CV data was compared with TASSEL-GLM (Table 1) and SAS-

GLM  (Table  3)  output,  we  discovered  that  the  CV  might  be  diagnostic  in  the 

identification of potentially troublesome data sets. The substantial  increase the CV at 

40% similar to  VRN-H1 (Fig. 3) was the precise point in the decay series where logic 

regression  could  no  longer  differentiate  between  the  decay-marker  and  randomly 

generated markers. This jump in CV within the decay series suggests there may be a limit 

in predictive capability. Our results suggest the ‘limit of predictability’ threshold may be 

where there this substantial increase in CV was observed (Fig. 3). Comparing CV values 

with the results from the SAS-GLM suggest CVs above 6% may result in the modeling of 

spurious associations.

Because, SAS-GLM identified a spurious interaction in the ‘Dicktoo’ x ‘OWB-D’ 

data set with both vernalization markers present (Table 3), suggested the data set may be 

problematic  right  from  the  start  due  to  noise.  The  ANOVA  suggested  noise  (by 

identifying a spurious interaction) and the CV analysis on the single-fit model scores 

suggest  variation  above  6%  may  lead  to  spurious  association.  In  support  of  the 

hypothesized modeling limit, it was reported when there are large variations in single-fit 

model scores during initial model identification, there may be problems with the data set 

(Kooperberg et al. 2001). Unfortunately, it’s unclear where that cutoff might be. This was 

a concern for us and it became one of the major reasons for performing the linkage decay 

series. Based on our results, we suggest any data set that has a single-fit model selection 

CV of 6% or less should prove reliable and identify real associations.

Our results suggests logic regression works in accurate identification of epistatic 

interaction and that the model building algorithm appears to be more robust and accurate 
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when  compared  with  traditional  general  linear  modeling  in  QTL  analysis.  From  a 

theoretical point of view, logic regression may use the more appropriate approach for 

modeling epistasis by forming logic groups as a means of identifying marker interaction 

independent of linear model assumptions and rules. This suggests logic regression to be a 

combined  non-parametric/parametric  approach  to  modeling  epistasis,  which  has  been 

suggested before real gains in epistasis research are realized. Advances in QTL analysis 

related to logic regression may prove cost effective by creating a useful random effects 

models  for  dominant  DNA data  which  would  identify  many  forms  of  epistasis.  By 

investigating  Boolean  logic’s  utility  in  high-level  mixed  and/or  Bayesian  models, 

definitive statements on the usefulness of logic groups in quantitative genetic modeling 

can be made. Regardless of these potential future applications, it does appear that logic 

regression is a useful tool in data mining applications28 and provides researchers with a 

complement to traditional QTL identification.
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Figure 1 The relationship between model score and linkage decay for the ‘Dicktoo’ x 

‘Calicuchima’-sib and ‘Dicktoo’ x ‘OWB-D’ data. The figure shows data for when both 

vernalization markers are present and modeled, VRN-H2 alone and modeled and the 

linkage decay data for VRN-H1 starting at 100% VRN-H1 and regressing to 0% similar to 

VRN-H1. RSS is the residual sums of square with error bars indicating the standard 
deviation from the mean for 100 replicated single-fit model searches. VH1/VH2=Both 

vernalization markers present, (%)VH1=(%)VRN-H1 alone and (%)VH2=(%)VRN-H2 
alone. Percentages in front of VH1 indicate percent similarity to the original decay 
marker indicating the level of introduced randomness at any given point in the decay 
series.
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Figure 2 Cross-validation plots showing the test scores for models with one logic tree 

and with one to five leaves (model size) on the x-axis. The ‘Dicktoo’ x ‘Calicuchima’-sib 
are data represented by black circles and the ‘Dicktoo’ x ‘OWB-D’ data represented by 
open circles. Models with the smallest test set RSS have the best predictive performance35 

and when there are ties in the score, we condition on the smallest model within the group. 
The cross-validation test is used to determine the logic tree with the best predictive 

capability by assessing how well the best model of size k performs in comparison to other 

size models15. The data set is divided into m (approximately) equal sized groups of 

cases15. For each of the m groups of cases, the ith groups are removed15. Then, the best 

scoring model of size k is found using only (m-1) groups15. The cases within group i are 

all scored under this model which yields a score kiε 15. The cross-validated test score for 

model size k equals ∑=
i kik m εε )/1( . The cross-validated scores for the model-size 

classes are then compared to determine the model with the best predictive capability.

Figure 3 The coefficients of variation (CV=s/ *100, where s = standard deviation and μ μ 

= mean) for 100 single-fit model scores shown in Figure 1. VH1/VH2=Both 

vernalization markers present, (%)VH1=(%)VRN-H1 alone and (%)VH2=(%)VRN-H2 
alone. Percentages in front of VH1 indicate percent similarity to the original decay 
marker indicating the level of introduced randomness at any given point in the decay 
series.

Table 1 Markers associated with the days to flowering phenotype, using TASSEL-GLM.
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 data obtained from Sz cs, P. ψ ű et al.24

Source of 
Variation

DF Mean 
Square

F-value p-value R2

‘Dicktoo’ x 
‘Calicuchima’-sibψ

VRN-H1 1 43312.83 87.11 6.33E-15*** 0.49

VRN-H2 1 10188.23 11.83 8.80E-04*** 0.12

RANDOM 70 1 6834.69 7.61 0.0070** 0.08

Error 91

‘Dicktoo’ x 
‘OWB-D’ψ

VRN-H1 1 87543.90 209.33 2.53E-25*** 0.70

VRN-H2 1 16319.55 13.59 3.86E-04*** 0.13

RANDOM 58 1 16155.45 12.24 7.27E-04*** 0.12

RANDOM 46 1 5061.18 4.16 0.04* 0.04

Error 91
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 p-values and R2 values for molecular markers identified by TASSEL-GLM.
   *Significant at the 0.05 level, ** Significant at the 0.01 level, 
   *** Significant at the 0.001 level

Table 2 Analysis of variance results for the ‘Dicktoo’ x ‘Calicuchima’-sib data full 

model for markers found to be associated with the days to flowering phenotype in 

TASSEL. Results are from a type III fixed effects model showing corresponding p-
values.

Source of Variation DF Type III 
SS

Mean 
Square

F-value p-value

VRN-H1 1 14374.4 14374.4 101.4 <0.001**

VRN-H2 1 14615.0 14615.0 103.1 <0.001** 

RANDOM 70 1 83.3 83.3 0.6 0.445(NS)

VRN-H1*VRN-H2 1 6367.3 6367.3 44.9 <0.001**

VRN-H1*RANDOM 70 1 200.1 200.1 1.4 0.238(NS)

VRN-H2*RANDOM 70 1 1.4 1.4 0.01 0.921(NS)

VRN-H1*VRN-

H2*RANDOM 70

1 26.3 26.3 0.2 0.668(NS)

Error 85

     ** Significant at the 0.001 level

Table 3 Analysis of variance results for the ‘Dicktoo’ x ‘OWB-D’ data full model for 

markers found to be associated with the days to flowering phenotype in TASSEL. Results 

are from a type III fixed effects model showing corresponding p-values.

Source of Variation DF Type III 
SS

Mean 
Square

F-value p-value

VRN-H1 1 9236.0 9236.0 136.42 <0.001**

VRN-H2 1 8188.2 8188.2 120.94 <0.001**

RANDOM 46 1 53.0 53.0 0.78 0.3799(NS)
RANDOM 58 1 169.4 169.4 2.50 0.118(NS)

VRN-H1*VRN-H2 1 5705.0 5705.0 84.26 <0.001**

VRN-H1*RANDOM 46 1 23.8 23.8 0.35 0.555(NS)

VRN-H1*RANDOM 58 1 301.1 301.1 4.45 0.038*

VRN-H2*RANDOM 46 1 10.6 10.6 0.16 0.694(NS)
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VRN-H2*RANDOM 58 1 208.9 208.9 3.09 0.083(NS)

VRN-H1*VRN-

H2*RANDOM 46

1 17.9 17.9 0.26 0.609(NS)

VRN-H1*VRN-

H2*RANDOM 58

1 185.6 185.6 2.74 0.1017(NS)

Error 81

 *Significant at the 0.05 level, ** Significant at the 0.001 level
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