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All known life requires phosphorus (P) in the form of inorganic phosphate (PO4
- or 

Pi) and phosphate-containing organic molecules1.  Pi serves as the backbone of the 

nucleic acids that constitute genetic material and as the major repository of 

chemical energy for metabolism in polyphosphate bonds.  Arsenic (As) lies directly 

below P on the periodic table and so the two elements share many chemical 

properties, although their chemistries are sufficiently dissimilar that As cannot 

directly replace P in modern biochemistry.  Arsenic is toxic precisely because As 

and P are similar enough that organisms attempt this substitution. We hypothesize 

that ancient biochemical systems, analogous to but distinct from those known today, 

could have utilized arsenate in the equivalent biological role as phosphate. 

Organisms utilizing such "weird life" biochemical pathways may have supported a 

“shadow biosphere” at the time of the origin and early evolution of life on Earth or 

on other planets.  Such organisms may even persist on Earth today, undetected, in 

unusual niches. 
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P ranks just behind H, O, C and N in a quantitative list of the most important 

elements in biology. However, P is usually less available to life than these other 

elements, particularly in the oceans. H and O are available in any aqueous solution, while 

C and N can be found in gaseous compounds that are readily distributed through the 

atmosphere and can be converted to highly soluble chemical forms. In contrast, while P is 

a relatively common element in the Earth’s crust ( 0.1% by weight)2, there is no gas 

phase P compound analogous to CO2, CH4, N2 or NH3, and common phosphate minerals 

such as apatite (Ca5(PO4)3(OH, F, Cl)) are only sparingly soluble3. The distribution of 

bioavailable P at the Earth’s surface is therefore extremely heterogeneous. In this way, P 

is similar to many of the so-called “micronutrient” elements (e.g., Fe, Cu, Mn, Zn, etc.) 

that are required in biology in trace amounts. As a result, the distribution of life at the 

Earth’s surface is often determined by the distribution of P, which is why phosphate 

(PO4
3-) fertilizers are commonly used to compensate for low P concentrations. 

Twenty years ago, Westheimer explained why life as we know it is based on P4.  A 

critical feature is the acid-base chemistry of P(V) in the form of phosphoric acid (H3PO4),

which dictates that the dominant soluble forms of P at biological pH (~7-8) are the 

charged  species H2PO4
- and HPO4

2- (collectively, these species and H3PO4 are referred to 

as “inorganic phosphorus” or Pi). Charged molecules are contained within lipid 

membranes more easily than are uncharged molecules, and hence evolution selected for 

biomolecules that include functional groups derived from Pi and other weak acids such as 

carboxylic acids and amino acids5. However, Pi is unique even among these weak acids 

because it can maintain a negative charge at physiological pH even when bonded to two 

other molecular units. Hence, as the building block for ATP and ADP, Pi prevents 

chemically-stored energy from escaping the cell.  Similarly, the repeating phosphodiester 

linkages in DNA effectively make DNA a polyanion, so that Pi helps cells retain their 
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genetic material. The negative repeating charge of DNA is also a key factor in its 

physical stability in the way it prevents folding of the linear strand, thereby protecting 

template-like behavior6.  Hence, Pi is well suited as a component of both metabolic and 

genetic molecules. 

However, other elements share key chemical properties with P. Of these, As in the 

(V) oxidation state warrants closer inspection.  Inorganic As(V), like P(V), is negatively 

charged over a range of physiological pH conditions, as AsO4
3-, HAsO4

2- or H2AsO4
-

(i.e., arsenate or Asi). In fact, the dissociation constants for H3AsO4 are so similar to 

those of H3PO4 that Asi and Pi follow strikingly similar speciation patterns (Figure 1A-

B). Also, like Pi, Asi is capable of retaining a negative charge even when it bonds to two 

other molecules. Because of these similarities, known life cannot easily distinguish Asi

from Pi. Thus, arsenate is taken up by cells via phosphate transporters and can substitute 

for Pi in the early steps of many Pi based metabolic pathways (see Table I).  Although As 

is generally thought to decouple oxidative phosphorylation, oxygen uptake continues in 

phosphate-deplete, arsenate-rich mitochondrial particles, suggesting that arsenate is 

substituting for phosphate in the early steps of this process7. These similarities account in 

large measure for the biological toxicity of Asi.

Why, despite these similarities, has the possibility of As-based life been 

discounted?  The primary chemical objection is that Asi-based compounds hydrolyze 

much more rapidly than their Pi counterparts4. In particular, polyarsenates hydrolyze 

orders of magnitude faster than do polyphosphates.  However, this objection is not 

decisive because both chemically exceptional aquatic environments and natural selection 

offer solutions, particularly when considered in the context of prebiotic chemistry and the 

evolution of early life8.
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The relative instability of polyarsenates does not rule out a role for Asi in 

environments in which it is present at much higher concentrations than Pi. Such settings 

could sustain elevated steady-state concentrations of polyarsenates and other As-based 

biomolecules vs. P-based analogs despite the former’s faster reaction rates.  Intriguingly, 

such environments include both terrestrial and deep sea hydrothermal systems9-11 where 

life is conjectured to have originated12,13 and where the last common ancestor may have 

avoided surface-sterilizing meteor impacts of the Late Heavy Bombardment14-16. In these 

systems, As and many other elements react with hydrogen sulfide to precipitate as sulfide 

minerals, forming the famous “chimneys” of undersea “black smoker” volcanoes. The 

surfaces of these minerals, rich in bioessential trace metals and S, and bathed in fluids 

containing dissolved volatiles like CO2 and N2
17, are widely recognized as a promising 

environment for prebiotic catalytic chemistry and early life18,19. Importantly, As forms 

sulfide minerals, unlike P, rendering it far more accessible than P for (bio)chemical 

reactions occurring on hydrothermal sulfide mineral surfaces. Although present in these 

minerals in a highly reduced form, measurements in modern, As-rich environments such 

as Mono Lake indicate that As thermodynamics drive conversion to arsenate and arsenite 

(AsO3
3-) at pH > 7 even in anoxic waters. In fact, arsenate is favoured over arsenite in 

waters that are so dysoxic that NO3
- and Fe3+ are absent20-26, as would have been the case 

for the deep oceans on the early Earth.  If arsenate is present then, like their Pi analogs, 

Asi biomolecules can form spontaneously. For example, in vitro mixtures of adenosine 

(or a deoxy analog) and Asi readily form As-nucleosides and As-nucleotides27 (Figure 2).  

Furthermore, these synthetic 5’AMAs can substitute for 5’AMP in reactions catalyzed by 

myokinase and adenylate deaminase27.  Thus, rapid hydrolization per se is unproblematic 

in environments rich in As, as key molecules may be quickly replenished. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
48

2.
1 

: P
os

te
d 

2 
Ja

n 
20

08



6

It is interesting to speculate that the reactivity of polyarsenates vs. polyphosphates 

might have actually been a virtue in prebiotic chemical systems or ancestral organisms. 

Because of the stability of Pi compounds, all known organisms require sophisticated 

enzymes to catalyze the removal or addition of Pi (phosphatases and kinases, 

respectively). Asi compounds might have needed less molecular machinery to fulfil their 

biochemical roles in ancient systems, facilitating the development of Pi-like metabolism. 

It is perhaps no coincidence that it is relatively simple, through site-directed mutagenesis, 

to change an arsenate reductase to a phosphatase28.  One interpretation of this similarity is 

that reductases derive from phosphatases. However, an equally plausible interpretation is 

that the fundamental biochemistry of Pi-based life emerged in an As-rich environment. 

Natural selection could have stabilized Asi biomolecules, analogous to ways that Pi

biomolecules have evolved stability against hydrolysis.  The phosphodiester bonds of 

RNA, for example, are stabilized in vivo by 5’ and 3’ end modifications as well as by 

numerous protein interactions29-31.  Without these mechanisms, the phosphodiester 

linkages to ribose hydrolyze within seconds under biological conditions32,33.  Moreover,

in vitro studies replicating thermophilic environments where early life may have resided 

show RNA hydrolysis steadily increases as temperatures rise from 65 to 200ºC34,

approaching reaction rate values which are comparable to those for short strands of 

polyarsenates35-39.  It is therefore plausible that As-based life emerged in As-rich 

environments and, once established, evolved strategies that would enable it to persist 

there.

A second objection to As raised by Westheimer is that it is easily reduced from 

As(V) to As(III), whereas P is rarely reduced from P(V) at the Earth’s surface4.

Although this difference poses some challenges to As-based metabolism, it also implies 
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some benefits because the redox properties of As provide possible bioenergetic pathways.  

Indeed, some extant microorganisms exploit this metabolic opportunity40-42.  Asi can 

serve as an electron acceptor by anaerobic heterotrophic bacteria that oxidize reduced 

carbon and produce arsenite20,42-44, or in chemolithoautotrophic arsenite oxidizers that fix 

inorganic carbon and produce arsenate45.  Therefore, far from being a liability, the redox 

character of As potentially makes it more biochemically versatile than P. 

Once life ventured forth from its As-rich primordial home, the balance of advantage 

probably tipped in favour of P because P is typically 10,000 times more abundant than As 

at the Earth’s surface. However, As-based life could even survive today in restricted 

pockets where As is present in abundance, such as deep sea hydrothermal systems or 

seasonally relevant episodes at Mono Lake11,20,25,26.

In conclusion, there seems to be no knock-down argument against As-based life, 

and considerable circumstantial evidence to suggest its plausibility.  In recent years, 

astrobiologists have devoted considerable attention to exploring the possibility of 

alternative forms of extraterrestrial life (dubbed “weird life”)46.  Curiously, little thought 

has been devoted to the possibility that the Earth may have once also harboured weird 

life.  It is a tantalizing prospect that an ancestral, alternative form of life might even 

continue to lurk in modern As-rich Earth habitats forming an extant “shadow 

biosphere”47.  A search of such environments would seem to be a promising initial step to 

test this hypothesis.  In view of the extensive consideration given to the possibility of 

emergent life on other planets, it would be ironic if we overlooked a candidate right here 

on Earth.
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Table I: Evidence of arsenate substitution for phosphate by modern, extant 
biochemical processes 

Reaction or Enzyme Arseno-analog Phosphate compound Reference 

Adenylate deaminase 5'AMAs 5'AMP 27

Adenylate kinase 5'AM(CH2)As AMP 48

Aspartate aminotransferase pyridoxal arsenate pyridoxal phosphate 49

Chloroplastic electron transport ADP-As ATP 50

Hexokinase ADP-As ATP 51,52

Human red blood cell sodium pump Asi Pi
53

Mitochondrial O2 consumption Asi Pi
7

Myokinase AMAs AMP 27

RNA Polymerase pyroarsenate pyrophosphate 54

R. rubrum light induced phosphorylation ADP+Asi ADP+Pi
55

Phosphoenolpyruvate mutase arsenopyruvate phosphonopyruvate 56

Phosphotransacetylase Asi Pi
57

Protein synthesis ADP-As hydrolysis ATP hydrolysis 52

Purine nucleoside phosphorylase Asi Pi
58
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FIGURE LEGENDS 

Figure 1.  pH and redox potential (pe) are the most important factors controlling 

arsenic speciation.  Phosphate (A) and arsenate (B) speciation are shown as a 

function of pH for the (V) oxidation states.  H3PO4 or H3AsO4 (dashed and dotted 

line), H2PO4
- or H2AsO4

- (dashed line), HPO4
2- or HAsO4

2- (dotted line) and PO4
3-

or AsO4
3- (solid line) are all indicated as % of total Pi or Asi.  The distribution 

curves in A and B show that Asi and Pi have similar charge and speciation under 

biologically relevant pH59-61. Redox speciation is shown on a pe-pH diagram for 

aqueous arsenic species (C) in the systems P-O2-H2O and As-O2-H2O at 25ºC 

and 1 bar total pressure.  Arsenic (solid red lines) and phosphorus (dashed blue 

line) species have been overlaid with in the bounds of the O2 – H2O redox couple 

(dotted black lines).  On such a diagram, phase boundaries represent the 

conditions at which the activities of the species on each side of the boundary are 

equal62,63.  Under dysoxic conditions (pe  0) and at neutral to mildly alkaline pH, 

the dominant As species is HAsO4
- suggesting that it would be present under 

conditions possibly relevant to the early evolution of life on Earth.

Figure 2.  Examples of both described and yet undetected arsenate containing 

biological molecules (at pH 7).  A, As-deoxyribonucleic acid (As-DNA); B, As-

ribonucleic acid (As-RNA); C, adenosine diphosphate arsenate (ADP-As) and D, 

adenosine monoarsenate (AMAs). 
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