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Abstract-In this paper, we describe certain rational approximations to the transcendental 
mathematical constants φ, e and π, that arise out of considerations of both: (1) the Euler 
relation for the division of the sphere into vertices, V, faces, F, and edges, E, and: (2) its 
simple algebraic transformation into the so-called Schläfli relation, which is an 
equivalent mathematical statement for the polyhedra, in terms of parameters known as 
the polygonality, defined as n = 2E/F, and the connectivivty, defined as p = 2E/V. It is 
thus the transformation to the Schläfli relation from the Euler relation, in particular, that 
enables one to move from a simple heuristic mapping of the polyhedra in the space of V, 
F and E, into a corresponding heuristic mapping into Schläfli-space, the space 
circumscribed by the parameters of n and p. It is also true, that this latter transformation 
equation, the Schläfli relation, applies only directly to the polyhedra, again, with their 
corresponding Schläfli symbols (n, p), but as a bonus, there is a direct 1-to-1 mapping 
result for the polyhedra, that can be seen to also be extendable to the tessellations in 2-
dimensions, and the networks in 3-dimensions, in terms of coordinates in a 2-dimensional 
Cartesian grid, represented as the Schläfli symbols (n, p), as discussed above, which do 
not involve rigorous solutions to the Schläfli relation. For while one could never identify 
the triplet set of integers (V, F, E) for the tessellations and networks, that would fit as a 
rational solution within the Euler relation, it is in fact possible for one to identify the 
corresponding values of the ordered pair (n, p) for any tessellation or network. The 
identification of the Schläfli symbol (n, p) for the tessellations and networks emerges 
from the formulation of its so-called Well’s point symbol, through the proper translation 
of that Well’s point symbol into an equivalent and unambiguous Schläfli symbol (n, p) 
for a given tessellation or network, as has been shown by Bucknum et al. previously. 
What we report in this communication, are the computations of some, certain Schläfli 
symbols (n, p) for the so-called Waserite (also called platinate, Pt3O4, a 3-,4-connected 
cubic pattern), Moravia (A3B8, a 3-,8-connected cubic pattern) and Kentuckia (ABC2, a 
4-,6-,8-connected tetragonal pattern) networks, and some topological descriptors of other 
relevant structures. It is thus seen, that the computations of the polygonality and 
connectivity indexes, n and p, that are found as a consequence of identifying the Schläfli 
symbols for these relatively simple networks, lead to simple and direct connections to 
certain rational approximations to the transcendental mathematical constants φ, e and π, 
that, to the author’s knowledge, have not been identified previously. Such rational 
approximations lead to elementary and straightforward methods to estimate these 
mathematical constants to an accuracy of better than 99 parts in 100. 
 
 
 
                                                 
β corresponding author, mjbucknum@gmail.com 
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1. Introduction 

Bucknum [1] in work first described in 1997, outlined a general scheme for 

the systematic classification and mapping of the polyhedra, 2-dimensional 

tessellations and 3-dimensional networks in a self-consistent topological 

space for these structures. This general scheme begins with a consideration 

of the Euler relation [2] for the polyhedra, shown below as Equation (1), 

which was first proposed in 1758 to the Russian Academy by Euler, and 

was, in fact, the point of departure for Euler into a new area of mathematics 

thereafter known explicitly as topology. 

 

                       V – E + F = 2                         (1) 

 

 Relation (1) stipulates that for any of the innumerable polyhedra, the 

combination of the number of vertices, V, minus the number of edges, E, 

plus the number of faces, F, resulting from any such division of the sphere, 

will invariantly be that number 2, known as the Euler characteristic of the 

sphere. The variables known as V, E and F are topological properties of the 

polyhedra, or, in other words, they are invariants of the polyhedra under any 

kind of geometrical distortions. It is from this simple Eulerian relation, that 

we can develop a systematic and, indeed otherwise rigorous, mapping of the 

various, innumerable structures that present themselves, in levels of 

approximation, as models for the structure of the real material world within 

the domain of that area of science known as crystallography. 

 About a century after Euler’s relation for the polyhedra was first 

proposed, as described above, the German mathematician Schläfli 

introduced a simple algebraic transformation of Euler’s relation, for various 
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 3

purposes of understanding the relation better, and adopting it more 

effectively in proofs [3]. Thus, Schläfli introduced two new topological 

variables, like V, E and F before them, that were derived from them. 

Schläfli, therefore, defined the so-called “polygonality”, hereafter 

represented by n, of a polyhedron as the averaged number of sides, or edges, 

circumscribing the faces of a polyhedron. He conveniently defined such a 

polygonality, as n = 2E/F, where, in this instance one can see that because 

each edge E straddles two faces, F, the definition is rigorous. Similarly, 

Schläfli introduced the topological parameter called the “connectivity”, 

hereafter represented by p, of a polyhedron as the averaged number of sides, 

or edges, terminating at each vertex of a polyhedron. He conveniently 

defined such a connectivity, as p = 2E/V, where, in this instance one can see 

that because each edge E terminates at two vertices, V, the definition is 

rigorous. 

 From these definitions of n and p as topological parameters of the 

polyhedra, Schläfli was able to show quite straightforwardly, by algebraic 

substitution, that a further relation exists among the polyhedra in terms of 

their Schläfli symbols (n, p). [3] It is from this equation, the Schläfli relation, 

shown as Equation (2) below, that one can see that not only do the polyhedra 

rigorously obey 2, but it is also true that their indices as (n, p), that serve as 

solutions to 2, in addition lead to a convenient 2-dimensional grid, or 

Schläfli space, over which the various polyhedra can be unambiguously 

mapped, as has been explained by Wells in his important 1977 monograph 

on the subject [4]. 

 

             
Epn
1  1  

2
1   1

=+−                               (2)                     
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 4

Figure 1 due to Wells [4], below, illustrates the application of this 

type of Schläfli mapping for the regular Platonic polyhedra, where one sees 

that the point that belongs to the origin of this mapping, is indeed given by 

the Schläfli symbol (n, p) = (3, 3). The symbol (3, 3) represents the Platonic 

solid known as the tetrahedron, or by the symbol “t” in the map, known 

since Antiquity by the Greeks. Thus, as it is cast as the origin of this 

mapping of polyhedra, it is apparently, the only self-dual polyhedron. 

Similarly (4, 3) is the Platonic solid of the Greeks known as the cube, or “c” 

in the map, (5, 3) is the Platonic solid of the Greeks known as the 

dodecahedron, or “d” in the map, (3, 4) is the Platonic solid of the Greeks 

known as the octahedron, or “o” in the map, and (3, 5) is the Platonic solid 

of the Greeks known as the icosahedron, or “i” in the map. 

 

Figure 1 

 

Although the mapping of the Platonic polyhedra, shown in Figure 1, 

indeed involves only those polyhedra in which the ordered pairs (n, p) are 

integers, it is readily transparent that one could magnify the map to include 

those polyhedra in which the polygonality “n” is fractional, these are the so-

called Archimedean polyhedra, discovered by Archimedes in Ancient 

Greece [5]. In addition, the map could be magnified to include those 

polyhedra in which the connectivity “p” is fractional, these are the so-called 

Catalan polyhedra, discovered in Europe in the 19th century [6]. And finally, 

the so-called Wellean polyhedra [7], discovered in the 21st century [8], in 

which both indexes, “n” and “p”, are fractional, could be mapped in this 

Schläfli space of the polyhedra, without any loss of mathematical rigor. 
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2. Mapping of Tessellations & Networks in Schläfli Space 

Wells also suggested [4], that the tessellations, which are structures or tilings 

extended into 2-dimensions and filling the plane, could have nominal labels 

attached to them, in the form of the Schläfli symbols (n, p), that, while not 

leading to rational solutions of the Schläfli relation, were, still it seems, 

rigorously defined from inspection of the topology of these elementary 

tessellations. Thus in order to extend the mapping in Schläfli space, the 

space of (n, p), some loss of rigor with regard to the Schläfli relation for the 

polyhedra had to be introduced, when considering the patterns known as 

tessellations. Wells, therefore included, explicity, the mapping of the square 

grid, given by the Schläfli symbol (4, 4), and the honeycomb grid, given by 

(6, 3), as well as the closest-packed tessellation, given by (3, 6), in his 

topology mapping, shown in Figure 1, along with the Platonic polyhedra. He 

thereby extended the mapping to the tessellations, and later he implied that 

such a mapping could be extended to include the 3-dimensional (3D) 

networks as well, with a concomitant further loss of mathematical rigor, in 

that the values assigned as (n, p) to the various tessellations and networks 

were not rigorous solutions to Equation (2).  

It is also true that Wells [7], perfectly well introduced a systematic 

and rigorous coding of the topology of tessellations and networks he worked 

with, which is now called the Wells point symbol notation, and that this was 

a simple coding scheme over the circuitry and valences, about the vertices, 

in the unit of pattern of the tessellations and networks. The Wells point 

symbol notation was, however, nonetheless an important development for 

the rigorous mathematical basis it put the tessellations and networks on, 

formally, as quasi-solutions (n, p) for the Schläfli relation shown as 

Equation (2).  
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 6

Therefore, in a generic case of the Wells point symbol notation, one 

could have such a symbol for an a-, b-connected, binary network, given as 

(Aa)X(Bb)Y, such that the exponents “a” and “b” nominally represent the 

valences of the 2 vertices in the tessellation or network of interest, and the 

bases “A” and “B” give the respective relative polygon sizes (circuit sizes) 

in the tessellation or network, while the parameters “X” and “Y” describe 

the binary stoichiometry of the network. In this generic case, we see that 

“X/Y” represents the number of structural components, identified by their 

topology character as (Aa), to the number of structural components identified 

by their respective topology as (Bb), that occur in this characteristic ratio in 

the structure, as specified by the unit of pattern.  

Despite his invention of this elegant notation, Wells, for some odd 

reason, never explicitly showed how to translate the language of the Wells 

point symbol (Aa)X(Bb)Y, rigorously into a Schläfli symbol (n, p), as was 

later shown elsewhere. Thus Bucknum et al., in 2004 [9], showed that the 

translation of the Wells point symbol into an, otherwise, from the 

perspective of Equation (2), rigorous set of values (n, p) for the purpose of 

mapping tessellations and networks, was achievable if one used the 

following straightforward, simple formulas (applicable in this case for a 

generic Wellsean, binary stoichiometry structure) for the ordered pair (n, p), 

which can later be employed in the mapping of the structure, as is shown by 

Equations (3). 

 

n = (a·A·X + b·B·Y)/(a·X + b·Y)             (3a) 

            

 

p = (a·X + b·Y)/(X + Y)                  (3b) 
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 7

 

It should, of course, be noted that one has to proceed with care in 

using Equations (3a & 3b), in this topology analysis of structures, by 

carefully normalizing the circuitry traced around the p-connected vertices of 

the structure (paying careful attention to the parameters “a” and “b” above), 

by rigorously translating the circuitry of a given structure, into a vertex 

connectivity for the network of interest, by employing a vertex translation 

table like that shown below. 

 

Table 1 

 

Therefore, from the use of Equations (3), for a binary stoichiometry, 

Wellsean net with topology (Aa)X(Bb)Y, or some other homologous 

translation formulas, as shown, for example, by Bucknum et al. for various 

elementary structural cases [9], it becomes, evidently, rigorously possible to 

precisely map the topology of any structure, including of course the 

polyhedra, but extendable to the vast body of the known tessellations and 

networks, that have been discovered and characterized crystallographically, 

otherwise by their symmetry character, now by their topological character in 

the form of a mapping in an extended Schläfli space, as is shown in Figure 2 

below. 

 

Figure 2 

 

3. A Survey of the Topology of Structures 

As Equations (1) & (2), and Figure 1 & 2 explicitly reveal, it is the Platonic 

solids that form the basis of this mapping formulation of structures described 
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 8

in this paper. These forms, as shown in Figure 3 with their appropriate 

polyhedral face symbolism [10], as discovered in Ancient Greece from the 

application of pure thought, were implicated later on in Plato’s Timeas, as 

the building blocks of Nature [11]. With the advent of modern 

crystallographic techniques by the Bragg’s in the 20th century [12], we have 

come to learn that the structure of matter does indeed often take on various 

vestiges of these eternal objects. And so they have come to be important in 

modern structural chemistry as elucidated by Pauling [13] and others. 

 

Figure 3 

 

 The polyhedra, thus forming the basis of the topology map of 

structures in Figure 2, and also rigorously obeying the topology relations 

shown as Equations (1) & (2) above, are positioned uniquely in this 

construction to support the vast space of tessellations and networks that, as 

we have seen in the preceding Section, can be mapped, rigorously, in Figure 

2 by the identification and proper translation of their Well’s point symbols, 

as described above, into ordered pairs as Schläfli symbols (n, p). Plato’s 

great work, Timeas, thus predicted the ascendancy of the material world into 

perfect forms, in which the Platonic polyhedra hold primacy and support the 

overall organizational structure of matter, from which the innumerable other 

polyhedral objects, and the innumerable 2D tessellations, and the 

innumerable 3D networks, together all emerge as perfect objects, in this 

scheme.  

 Later, it has been shown by Duchowicz et al. [14], that indeed 

molecular structures can be represented in the scheme of Figure 2, and they 

have a corresponding set of two topology relations (in addition to n = 2E/F 
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 9

and p = 2E/V), shown as Equations (4) & (5) below, that govern their 

mapping into Figure 2.  

 

                         V – E + F = 1                      (4) 

 

Epn 2
1  1  

2
1   1

=+−                          (5) 

 

In this way, one can see that the overall chemical topology scheme described 

here, is a complete description of the topology of all matter constituting the 

material world. This communication will not treat the specific applications 

of Equations 4 & 5, but it will be left to the reader to refer to those 

applications suggested in the literature [14]. 

 Moving from the polyhedra and molecular fragments, as described 

above, one can then map the regular tessellations as shown in Figure 4, with 

the honeycomb tessellation, given by the Wells point symbol notation as 63, 

and translated into the mapping symbol or Schläfli symbol as (n, p) = (6, 3), 

and the square grid, given by the Wells point symbol notation as 44, and 

translated into the mapping symbol or Schläfli symbol as (n, p) = (4, 4), and 

finally, the third regular tessellation, which thus outlines the space of Figure 

2 in terms of the tessellations, as the closest-packed grid, given by the Wells 

point symbol notation as 36, and translated into the mapping symbol or 

Schläfli symbol as (n, p) = (6, 3). 

 

Figure 4 

 

One can, of course, insert all manner of hybrid tessellations, among these 3 

regular ones, and generate innumerable Archimedean, Catalan and Wellsean 
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 10

tessellations. Some hybrid tessellations of the square grid-honeycomb grid 

pair have been analyzed topologically by Bucknum et al. [15]. There are, of 

course, an infinity of such structural tessellations, and they indeed fill the 

space in the neighborhood of the borderline between the polyhedra and the 

tessellations, on the one hand, and the tessellations and the networks in 3D, 

on the other hand. It is also true that Wells and others [4], have identified 

tessellations of the plane comprised of 5-gons & 7-gons, and their have been 

tessellations of 4-gons & 6-gons that admit unstrained 8-gons, and there are 

many more tessellations proposed, some of which have been taken as models 

of various C allotropes [16-18], which essentially can possess any n-gons in 

their pattern, provided that the restraint of being regular n-gons is relaxed. 

And it is thus true, that all of this infinity of tessellations can be mapped, 

rigorously, by the methods outlined above. 

 Finally, the map in Figure 2 outlines the 3D networks, and a 

prominent member is, of course, the diamond lattice given by the Wells 

point symbol 66, which is translated [9] into the Schläfli symbol (6, 4). By 

examination of Figure 2, one can see that the diamond network, given the 

Schläfli symbol (6, 4), is situated just across the borderline from the 2-

dimensional honeycomb tessellation given by (6, 3) in the map. One member 

of the diamond network topology, is in a cubic symmetry space group of Fd-

3m, space group #227, one of the highest symmetry space group patterns. 

There are, in fact, innumerable possible polytypic patterns within the 

diamond topology, several of these have been discussed recently by Wen et 

al. [19] in some detail, and all of them collectively possess the same Wells 

point symbol of 66, and the corresponding Schläfli symbol of (6, 4). It is 

only by their symmetry character, that the members of the diamond 
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 11

polytypic series can be distinguished from each other. Thus, the simplest 

cubic diamond polytype, known as 3C, is shown in Figure 5 below.  

 

Figure 5 

 

Thus in the diamond network, which corresponds to the Platonic (integer) 

topology of the Platonic polyhedra, one can readily trace the uniform 6-gon, 

puckered circuitry of the network connected together by all 4-connected, 

tetrahedral vertices. Diamond’s topology classifies the network as a regular, 

Platonic structure-type. 

 Next, we move to the space between (6, 3) and (6, 4), seemingly 

between 2D and 3D forms, and investigate what potential structures might 

emerge along this boundary area. Such an examination turns up two distinct 

families of Catalan networks, that together possess the Catalan Wells point 

symbol (66)x(63)y. One can see, through this Wells point symbol notation, 

that we are describing hybrid structures of the honeycomb tessellation, the 

so-called graphene grid, 63, and the diamond network, 66. The notation “y/x” 

specifies the stoichiometry of the net, in terms of the ratio of 3-connected, 

trigonal planar vertices, to 4-connected, tetrahedral vertices in the hybrid 

structure [20]. 

 Thus one example of such a class of hybrid “graphene-diamond” 

structures is shown in Figure 6, and these forms are known, by their hybrid 

topology, as the “graphite-diamond hybrids”. They come in infinite series’, 

in each of two varieties that are known as the ortho- form, and the para-form, 

these have been elegantly described by Balaban et al. in 1994 [21]. 

Collectively, as a family, they possess the Schläfli symbol of (6, 3(x/(x+y))), 

where the parameters “x” and “y” have the stoichiometric significance 
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 12

ascribed to them in the preceding paragraph. These structures, as a family, 

occupy the border-line area between (6, 3) and (6, 4) in the Schläfli map in 

Figure 2. 

 

Figure 6 

 

Yet another family of “graphite-diamond” hybrid structures to be 

considered, with the Wells point symbol (66)x(63)y, and the corresponding 

Schläfli symbol given by (6, 3(x/(x+y))), is the family of structures described 

first by Karfunkel et al. [22] in 1992, as being built from the barrelene 

hydrocarbon molecular fragment, and extended by the insertion of benzene-

like tiles to the parent framework, to generate many infinities of derived 

structures, which all, collectively, possess the hybrid graphite-diamond 

topology described above. Later, in 2001, Bucknum [23] clarified the details 

of the parent such structure derived by Karfunkel et al., and he called this 

structure “hexagonite” and the derived, such structures were known as the 

“expanded hexagonites”. This name was assigned due to the symmetry space 

group of the parent structure, in P6/mmm, space group #191, and also due to 

the topology of the family of such structures, in which all circuitry over all 

members of the family, are comprised of 6-gons. The topological analysis of 

the hexagonite family, suggests that they begin with the Schläfli symbol (n, 

p) = (6, 32/5), and extend from there, in descending, discrete increments of 

the connectivity, p, towards their termination at (n, p) = (6, 3), in the limit of 

the graphene grid topology. The parent “hexagonite” is shown in two views 

in Figure 7. 

 

Figure 7 
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 13

 

It should be noted here that the so-called “graphite-diamond hybrids”, 

as described above, are models for novel types of allotropes of carbon. In the 

vein of this discussion, it should be mentioned here that the border-line 

space in the topology map of Figure 2, between the entry in the map of (5, 

3), which is the pentagonal dodecahedron, and the entry in the map (6, 3) 

which is, of course, the graphene grid, lies the collective and infinite space 

of the fullerene C structures [24]. So, we can see that thus, the collective 

Schläfli symbol for the family of fullerenes is, in fact, given by (5(x/(x+y)), 3), 

where, in this instance, “x” is the number of pentagons in the polyhedron, 

and “y” is the number of hexagons in the polyhedron [10]. The Schläfli 

symbol for the parent C allotrope called “Buckminsterfullerene” (C60) is 

(55/8, 3) [24], and as substitution into Equation 2 will show, this Schläfli 

symbol rigorously describes the Buckminsterfullerene polyhedron fully. 

Figure 8 shows a view of this polyhedron of icosahedral symmetry, and it is 

clear from this view that the polyhedron is uniformly 3-connected, (as the 

Schläfli symbol reveals, the fullerenes are Archimedean) and comprised 

entirely of 5-gon and 6-gon circuitry.  

 

Figure 8 

 

Yet a final 3D network to be mentioned in this connection, which is a 

model of a 3-,4-connected network of C, as opposed to a straight “graphite-

diamond” hybrid, lying between (6, 3) and (6, 4) of Figure 2, or a fullerene 

polyhedron, lying between (5, 3) and (6, 3) of Figure 2, as in the preceding 

discussions with respect to allotropes of C; is the so-called “glitter” network 

of C invented by Bucknum et al. in 1994 [25]. This structure can be 
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envisioned as being constructed from a 1,4-cyclohexadiene building block, 

and it is shown in Figure 9. 

 

Figure 9 

 

As can be seen in Figure 9, the Wells point symbol for this Wellsean 

network is given by (6284)(628)2, and derived from this, is its Schläfli symbol 

of (7, 31/3) [9]. It is comprised of 6-gons admixed with 8-gons, in its 

topology, and an admixture of two trigonal vertices for every one tetrahedral 

vertex in its connection pattern. This particular C network has been 

important from the perspective of the 3-dimensional (3D) resonance 

structures which can be drawn over it, see Figure 10, and there have been 

some favorable indications that its synthesis has been achieved [26-27]. 

 

Figure 10 

 

 Other inorganic networks that are of interest, that are not C allotropes, 

or models of C allotropes, would include the Archimedean Cooperite 

network, the structure of the minerals PtS and PdO [13], shown in Figure 11, 

which is a 4-connected network comprised of an equal mixture of tetrahedral 

and square planar vertices, both of which are distorted in their geometries 

[22]. 

 

Figure 11 

 

As Figure 11 indicates, taking both tetrahedral and square planar vertices as 

equally 4-connected, one can thus assign an Archimedean topology to this 
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network, with a Wells point symbol of (4284)(4282), and a Schläfli symbol of 

(62/5, 4) [9]. In this case, the network nominally is binary, with two distinct 

types of connectivity, and an apparently Wellsean topology associated with 

this, but, in fact in this instance, we have a 4-connected network where the 

square planar vertices (with 4 independent circuits) are viewed as equivalent 

in topology (if distorted) versions of the tetrahedral vertices (with 6 

independent vertices). 

 Yet another inorganic network includes, but is not limited to, the 

Catalan fluorite network [13], the structure of a number of mineral fluorides 

including CaF2, shown in Figure 12. 

 

Figure 12 

 

This densely connected network is comprised of 4-connected tetrahedral 

vertices (the fluoride, F- sites at (¼, ¼, ¼)), together with 8-connected cube-

centered vertices (the calcium, Ca2+ sites at (0, 0, 0)), which are connected to 

each other through a uniform set of 4-gons. The topology of this network 

can be represented by the Wells point symbol (424)(46)2, and this can be 

translated into a Catalan Schläfli symbol of (4, 51/3) [9]. It can be mapped in 

Figure 2 just beyond the entry (4, 5). 

 Still another inorganic structure-type we can provide the topology of, 

is the rocksalt (or primitive cubic) lattice [13], which is the structure of a 

number of inorganic alkali metal halides and alkaline earth chalcogenides. 

The rocksalt lattice is shown in Figure 13 below. 

 

Figure 13 
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Also known as the primitive cubic structure-type, the rocksalt lattice is 

comprised uniformly of octahedral 6-connection in all 4-gon circuitry. The 

Wells point symbol for the network is given as 412, and this can be translated 

into a Schläfli symbol for the network of (4, 6) [9]. Because this rocksalt 

network is of a Platonic (regular, integer) topology, it can readily be seen 

where it maps in Figure 2. It represents, structurally, an extension into 3-

dimensions (3D) of the square grid 44, or (4, 4) which extends in 2D, 

through a layering, in exact register, of other square grids onto a parent 

square grid, and their interconnection through perpendicular interlayer 

bonding through the respective vertices. 

 As a final inorganic structural-type that we can analyze here 

topologically in this Section, we have the so-called body-centered cubic 

(bcc) structure of CsCl [13], and a number of inorganic structures including 

alkali metal halides and alkaline earth chalcogenides and other materials. 

The bcc structure-type is shown here in Figure 14.  

 

Figure 14 

 

It is uniformly comprised of 8-connected, cube-centered vertices that are 

mutually interconnected by all 4-gon circuits in the net. The topology of the 

bcc lattice can be specified by 424, or by the corresponding Platonic Schläfli 

symbol of (4, 8) [9]. 

 There are, of course, innumerable other network structures that 

possess 3-dimensional geometries, one only has to look at the exhaustive 

works of O’Keeffe et al. to discern the scope of this field [28]. In the present 

discussion, we move, in the next Section, into the area of the topological 

analysis of some networks in 3-dimensions that exhibit rather odd Schläfli 
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symbols (n, p). These networks, the oldest of which was identified only in 

1951 (Waserite) [29], and the others of which were identified only in 1988 

(Kentuckia) [30], and 2005 (Moravia) [31], suggest from the computation of 

their respective Schläfli symbols (n, p), by the methods outlined in Section 2 

and Equation (3) above, that such numbers represent not only topological 

parameters of these networks, but they coincidently and fortuitously can be 

construed as rational approximations, in various instances, to the 

transcendental mathematical constants φ, e and π.  

 

4. Rational Approximations to φ, e and π and the Topology of Matter 

Certain material networks, including the CaCuO2 [30] (Kentuckia network 

[32]) structure-type, that is the progenitor for all of the superconducting 

cuprates, and the so-called Moravia structure-type [33], that is the proto-type 

structure for a number of coordination network (also called metal-organic 

frameworks or MOF’s) structural compositions [31], and the so-called 

Waserite structure-type [29], that is the structure of the anionic, platinate 

sublattice of the ionic conducting lattice, known as sodium platinate 

(NaPt3O4), have here, through topological analysis, been shown, either to 

have a network polygonality, n, (Kentuckia network) the value of which 

serves as a rational approximation to the transcendental mathematical 

constant π, or, alternatively, they have a network connectivity, p, the value 

of which serves as a rational approximation to the product of the 

transcendental mathematical constants e and φ (Moravia network), or e and π 

(Waserite network). 

 The Kentuckia structure-type, proposed by Bucknum et al. in 2005 

[32], is the pattern adopted by the high temperature superconducting cuprate 

composition, it is CaCuO2 [30] that adopts this pattern, which is the 
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progenitor to all the superconducting cuprates discovered so far. This 

tetragonal structure-type lies in space group P4/mmm, #123 and is shown in 

Figure 15 below. 

 

Figure 15 

 

It can be seen from Figure 15 that this tetragonal oxide, bears a relation to 

the cubic perovskite (BaTiO3, [13]) structure-type which lies in the cubic 

space group Im-3m, not shown here, in which, by removal of an axial pair of 

oxygen vertices, one can generate the Kentuckia structure-type from the 

perovskite structure-type. However, it should be pointed out that the 

perovskite structure-type is a 6-,12-connected network, in which the 

transition metal titanium and chalcogenide oxygen centers, attain octahedral 

6-coordination, while the alkaline earth barium cation bears a closest packed 

coordination sphere of 12. Whereas in the Kentuckia structure-type, the 

lattice, by great contrast as can be seen in Figure 15, bears an oxygen vertex 

with a square planar, 4-connected coordination, and the transition metal 

copper vertex bears an octahedral, 6-connected coordination, while the 

alkaline earth calcium cation is in cube-centered, 8-fold coordination. It is a 

ternary, 4-,6-,8-connected tetragonal structural pattern, as is described in 

Figure 15. 

 Thus the connectivity in Kentuckia, is that of a ternary 4-,6-,8-

connected structural-type, while the connectivity in perovskite appears to be 

that of a binary 6-,12-connected network topology. It appears that all the 

circuitry in perovskite is comprised of 4-gons with, perhaps, the 

stoichiometry AB4, in which the vertex “A” is in 12-connected, closest-

packed topology, and the vertex “B” is 6-connected, octahedral 
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coordination. This leads to a Wells point symbol for perovskite of (460)(412)4 

and a Schläfli symbol of (n, p) = (4, 7.2). Where, as a reference, the 

hexagonal closest packed (hcp) and cubic closest packed (ccp) networks, 

have the Wells point symbol 360, and a Schläfli symbol of (n, p) = (3, 12). In 

contrast, we see that the polygonality in the Kentuckia pattern, as revealed in 

Figure 15, is a composite of 4-gons and 6-gons, with the Wells point symbol 

for the lattice being (44)(412612)(412)2. As Equation 6 reveals, the 

polygonality, n, for this structural-type, bears an odd resemblance to the 

transcendental mathematical constant π [31], occurring as it does, within 1% 

of exactly the value of √2·π. 

 

                    n = (40·4 + 12·6)/52                     (6a) 

 

                       n = √2·π                            (6b) 

 

 Turning to the Waserite network [29], which is shown to be a 

relatively simple, binary 3-,4-connected network topology in Figure 16. 

 

Figure 16 

 

As is revealed in Figure 16, the 3-to-4 stoichiometry of 4-connected square 

planar vertices to 3-connected trigonal planar vertices, present in the 

Waserite topology, together with the Wells point symbol for this network as 

(84)3(83)4, thus demonstrates that this simple structure is indeed a binary, 

Catalan network comprised of all 8-gon circuitry. Therefore it is apparent, 

readily, that the polygonality is simply given by n = 8, in this pattern. But as 

has been described previously for this so-called Waserite network [34], the 
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connectivity index of it, as shown in Equations 7, suggests that its topology 

is more complex than meets the eye. 

 

                   p = (3·4 + 4·3)/7                        (7a) 

 

                      p = (2/5)e·π                                                  (7b) 

 

As Equation 7 reveals, it is a fact of simple arithmetic that the 

weighted average connectivity of the Waserite network, given by the symbol 

p, is in fact equal, to better than 99 parts in 100, to (2/5)e·π. Here π is, the 

familiar ratio of a circle’s circumference to its diameter [35], and e is the 

natural base of exponentials [36]. These numbers are transcendental, as they 

are infinite, non-repeating fractions [35, 36]. An identical relation will also 

hold for the other structures patterned on a stoichiometry of four 3-

connected vertices-to-three 4-connected vertices including, for example, the 

rhombic dodecahedron (given by the Catalan Wells point symbol as 

(44)6(43)8), and the well-known phenacite network of Bragg et al. (not 

shown, given by the Wellsean ternary Wells point symbol (83)(63)3(6383)3 

[37])  

Other relations emerging from such consideration of the connectivity 

index, p, in the Waserite structural-type include Equation 8 [34], known 

hereafter as the Timeas relation, for its suggestion of a Cosmogony based 

upon the 5 Platonic solids as enunciated by Plato [11]. 

 

           (1)·(2.3333333………….)·e·π = (4)·(5)                              (8) 
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Equation 8 suggests the ultimate simplicity of definitions of e and π, through 

an elementary relationship involving only the first 5 counting numbers, or 

alternatively, the first 4 prime numbers [34]. 

 Finally, in this survey of crystalline structure-types which exhibit 

relations to the transcendental mathematical constants, in their structural 

topology, we turn to the so-called Moravia network [31, 33], first posited as 

a potential structural-type in 2005 by Bucknum et al. This Moravia network 

has, in fact, turned out to be the structure adopted by several coordination 

networks known as metal-organic-frameworks (MOF’s) [31]. It is readily 

seen to be a Wellsean, 3-,8-connected network upon careful inspection of the 

drawing for valences, and tracing of circuitry in Figure 17. 

 

Figure 17 

 

The Wells point symbol for the Moravia structural-type is encoded as 

(4468812)3(43)8, it is thus a complex, Wellsean network composed of two 

connection motifs, the trigonal planar, 3-connected, and cube-centered, 8-

connected, vertices, held together in circuits of 4-gon, 6-gon and 8-gon sizes. 

The complex Well’s point symbol for the network, belies in this instance, 

the relatively high symmetry of the structure, in which Moravia is lying in 

the cubic space group Pm-3m, #221. 

 If we take the point symbol for the network, and analyze it according 

to Equations (3) described above, the Well’s point symbol translation 

formulas, one obtains the result that the weighted average polygonality for 

the network is indeed given by n = 6. The Waserite net is thus pseudo-

Catalan, with an integer polygonality of 6, that is nonetheless the result of 

averaging over 4-, 6- and 8-gons in its structural pattern. Upon calculating 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
58

7.
1 

: P
os

te
d 

12
 F

eb
 2

00
8



 22

the connectivity index, p, for Moravia, however, we get the result shown in 

Equation 9. 

 

                      p = (3·8 + 8·3)/11                      (9a) 

 

                      p = e·φ                                                           (9b) 

 

Thus it is seen that the connectivity index, p, of Moravia, as a 3-,8-connected 

network, is equivalent, to better than 99 parts in 100, to the product of the 

two transcendental mathematical constants φ [38] and e [36], given simply as 

φ·e. Here, as above, e is the natural base of exponentials [36], and φ is the 

well-known golden ratio [38], as is expressed in Equation (10). 

 

                        φ = (√5 + 1)/2                       (10) 

 

Equations (9), like the transformation of Equation (7) to Equation (8) above, 

can be factored, interestingly, so that the relation of φ·e evolving out of the 

topology of the Moravia structure, as shown in Figure 17 above, involves the 

first 6 Fibonacci numbers, F(1-to-6) (given, on the left, in Equation (11b) as 

1, 1, 2, 3, 5, and 8), and these are related to the 10th Fibonacci number, F(10) 

(given, on the right, in Equation (11b) as 55). 

 

           F(1)·F(2)·F(3)·F(4)·F(5)·F(6) = (e)·(φ)·F(10)           (11a) 

 

            (1)·(1)·(2)·(3)·(5)·(8) = (e)·(φ)·(55)                 (11b) 
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These relations between the topology of these structures in this 

Section, as is revealed by the computation and mapping of their 

corresponding Schläfli symbols (n, p), and the transcendental mathematical 

constants φ, e and π, that can be thus correlated to their structural character, 

suggest the mathematical, and potentially scientific, richness that such 

structures may lead to. 

 

5. Conclusions 

In this paper we have reviewed the basic tenets of a chemical topology 

scheme, one that can be applied to classify and effectively map the 

innumerable polyhedra, tessellations and networks, based upon a simple 

computation of their Schläfli symbols (n, p), from translation of their 

corresponding Wells point symbols. A restriction pointed up by this work, is 

that all structures in such a chemical topology scheme must, indeed, be 

simply connected. The phrase “simply connected” means that all edges, E, in 

a structure, be it a polyhedron, tessellation or network, must terminate at 

distinct vertices, V, in the network, where such edges, E, are known as 

proper edges. A second condition on a net being “simply connected”, is that 

all faces, F, in the structure should be bounded by proper edges, E, as 

defined in the preceding sentence. It is not clear, at this juncture, what form 

a systematic chemical topology would take on for the “non-simply 

connected” structures. As there are innumerable non-simply connected 

structures, to accompany the infinite number of simply connected structures 

in Schläfli space (the space of the Schläfli symbols (n, p)), it would seem 

that a topological analysis of these complex structures would be desirable 

and necessary to get a more complete handling of the chemical topology of 

crystal chemistry. 
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 The brunt of this paper has been dedicated to a survey of some of the 

more prominent (well-known or obvious) organic and inorganic structure-

types. Organic structures included some well-known C allotropes, like the 

regular, graphene grid and the regular, diamond network, both forms of C 

known since Antiquity. And, also, more modern C forms were surveyed, like 

the 3-,4-connected, Catalan graphite-diamond hybrids [21], the 3-,4-

connected, Catalan hexagonite lattices [22, 23] and the Wellsean, 3-,4-

connected glitter C form [25], for which there is currently some evidences of 

their syntheses from the growth of C nanocrystals [26, 27]. Inorganic 

structures included in this survey, were the 4-,8-connected, Catalan fluorite 

lattice, the 4-connected, Archimedean Cooperite lattice, the 8-connected, 

regular CsCl, body-centered cubic structure-type, and the 6-connected, 

regular rocksalt structure-type. [13] Finally, in this survey, lattices which 

admitted connections in their topology to the transcendental numbers 

included the 3-,8-connected, Wellsean Moravia net, discovered in 2005 [31, 

33] (related to φ and e, through the connectivity), the 4-,6-,8-connected, 

Wellsean Kentuckia (cuprate structure-type) net, discovered in 1988 [30, 32] 

(related to π, through the polygonality), and finally the 3-,4-connected, 

Catalan Waserite net (platinate structure-type), discovered in 1951 [29]. 

 The occurrence of relations to the transcendental numbers of 

mathematics, in the computations of the topology character of some of these 

networks, is indeed a mysterious outcome. It is not clear whether such 

relations could imply that the topology of these lattices, like the Kentuckia 

lattice, in which n = √2·π, could indeed be equated to some type of ordering 

parameter for the lattice, such that by the introduction of systematic defects 

in the connectivity, p (or thereby the polygonality, n) over the bulk lattice, 

might lead to a corrected value of n, that asymptotically approaches the true 
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value of π, and that, that might have some bearing on bulk properties of the  

Kentuckia network, like the critical superconducting transition temperature, 

Tc, in the cuprate composition CaCuO2 [32]. Such considerations as these, 

open up new avenues of explorations for solid state scientists based upon the 

intrinsic topology character of such networks as these. 
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Figure 1: Topology mapping of the Platonic polyhedra due to Wells 
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Table 1: Vertex Connectivity, p, as a Function of Circuit Number 
 

name 
 

vertex connectivity 
 

circuit number 
 

trigonal planar 
 
3 

 
3 

 
square planar 

 
4 

 
4 

 
tetrahedral 

 
4 

 
6 

 
trigonal bipyramidal 

 
5 

 
9 

 
square pyramidal 

 
5 

 
10 

 
octahedral 

 
6 

 
12 

 
cube centered 

 
8 

 
24 

 
anti-cube centered 

 
8 

 
28 

 
closest packed 

 
12 

 
60 
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Figure 2: Extended Schläfli space of the Platonic Structures 
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Figure 3: The Platonic polyhedra, with their corresponding polyhedral face 

symbols and Wells point symbols, comprised of the tetrahedron (34 and 33), 

the octahedron (38 and 34), the icosahedron (320 and 35), the cube (46 and 43), 

and the dodecahedron (512 and 53) 
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Figure 4: The Platonic tessellations, with their corresponding Wells point 

symbols, given as the closest-packed grid (36), the square grid (44) and the 

honeycomb grid (63) 
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Figure 5: Cubic diamond (3C) polytype, with the Wells point symbol (66), 

lying in symmetry space group (Fd-3m)  
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Figure 6: Representatives of the infinite families of ortho- and para- 

graphite-diamond hybrid structures, with the collective Wells point symbol 

(66)x(63)y, of orthorhombic symmetry (Pmmm) 
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Figure 7: Vertical and lateral views of parent hexagonite structure of the 

infinite family of hexgonites, with the collective Wells point symbol 

(66)x(63)y, of orthorhombic-trigonal-hexagonal (Pmmm, P3m1 and P6/mmm) 

symmetries 
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Figure 8: The parent Buckminsterfullerene polyhedron, of the infinite 

family of fullerenes, with the collective Schläfli symbol for the family of 

fullerenes given by (5(x/(x+y)), 3), and the fullerene polyhedral face symbol of 

5x6y, where “x” is the number of hexagons, and “y” is the number of 

pentagons, in the fullerene, where such structures are of icosahedral (Ih) and 

lower symmetry 
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Figure 9: Tetragonal glitter network of carbon, with Wells point symbol 

given by (6284)(628)2, and of space group symmetry (P42/mmc) 
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Figure 10: Resonance structures of the graphite and glitter networks of C 
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Figure 11: Archimedean Cooperite network as structure of PdO and PtS, 

with the Wells point symbol of (4284)(4282), and of space group symmetry 

(P42/mmc) 
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Figure 12: Catalan fluorite structure as the structure of CaF2, this network 

can be represented by the Wells point symbol (424)(46)2, and lies in space 

group (Fm-3m) 
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Figure 13: Platonic rocksalt structure as the structure of NaCl, this network 

can be represented by the Wells point symbol (412), and lies in space group 

(Pm-3m) 
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Figure 14: Platonic body-centered cubic (b.c.c.) structure as the structure of 

CsCl, this network can be represented by the Wells point symbol (424), and 

lies in space group (Im-3m) 
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Figure 15: Wellsean Kentuckia (ABC2) structure-type as the structure of the 

superconducting cuprate salt CaCuO2, this network can be represented by 

the Wells point symbol (44)(412612)(412)2, and lies in space group (P4/mmm) 
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Figure 16: Catalan Waserite structure-type as the structure of the ionic 

conducting platinate salt NaPt3O4 (sodium cations not shown), this network 

can be represented by the Wells point symbol (84)3(83)4, and lies in space 

group (Pm-3n) 
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Figure 17: Wellsean Moravia structure-type as the structure of several 

coordination networks (metal organic frameworks, MOF’s), this network 

can be represented by the Wells point symbol (4468812)3(43)8, and lies in 

space group (Pm-3m) 
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