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Abstract-In this paper, we describe certain rational approximations to the transcendental
mathematical constants ¢, e and 7, that arise out of considerations of both: (1) the Euler
relation for the division of the sphere into vertices, V, faces, F, and edges, E, and: (2) its
simple algebraic transformation into the so-called Schlifli relation, which is an
equivalent mathematical statement for the polyhedra, in terms of parameters known as
the polygonality, defined as n = 2E/F, and the connectivivty, defined as p = 2E/V. It is
thus the transformation to the Schlifli relation from the Euler relation, in particular, that
enables one to move from a simple heuristic mapping of the polyhedra in the space of V,
F and E, into a corresponding heuristic mapping into Schlifli-space, the space
circumscribed by the parameters of n and p. It is also true, that this latter transformation
equation, the Schléfli relation, applies only directly to the polyhedra, again, with their
corresponding Schlédfli symbols (n, p), but as a bonus, there is a direct 1-to-1 mapping
result for the polyhedra, that can be seen to also be extendable to the tessellations in 2-
dimensions, and the networks in 3-dimensions, in terms of coordinates in a 2-dimensional
Cartesian grid, represented as the Schlifli symbols (n, p), as discussed above, which do
not involve rigorous solutions to the Schlifli relation. For while one could never identify
the triplet set of integers (V, F, E) for the tessellations and networks, that would fit as a
rational solution within the Euler relation, it is in fact possible for one to identify the
corresponding values of the ordered pair (n, p) for any tessellation or network. The
identification of the Schlifli symbol (n, p) for the tessellations and networks emerges
from the formulation of its so-called Well’s point symbol, through the proper translation
of that Well’s point symbol into an equivalent and unambiguous Schléfli symbol (n, p)
for a given tessellation or network, as has been shown by Bucknum et al. previously.
What we report in this communication, are the computations of some, certain Schlifli
symbols (n, p) for the so-called Waserite (also called platinate, Pt;04, a 3-,4-connected
cubic pattern), Moravia (A3;Bs, a 3-,8-connected cubic pattern) and Kentuckia (ABC,, a
4-,6-,8-connected tetragonal pattern) networks, and some topological descriptors of other
relevant structures. It is thus seen, that the computations of the polygonality and
connectivity indexes, n and p, that are found as a consequence of identifying the Schlifli
symbols for these relatively simple networks, lead to simple and direct connections to
certain rational approximations to the transcendental mathematical constants ¢, e and m,
that, to the author’s knowledge, have not been identified previously. Such rational
approximations lead to elementary and straightforward methods to estimate these
mathematical constants to an accuracy of better than 99 parts in 100.
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1. Introduction
Bucknum [1] in work first described in 1997, outlined a general scheme for
the systematic classification and mapping of the polyhedra, 2-dimensional
tessellations and 3-dimensional networks in a self-consistent topological
space for these structures. This general scheme begins with a consideration
of the Euler relation [2] for the polyhedra, shown below as Equation (1),
which was first proposed in 1758 to the Russian Academy by Euler, and
was, in fact, the point of departure for Euler into a new area of mathematics

thereafter known explicitly as topology.

V_E+F=2 (1)

Relation (1) stipulates that for any of the innumerable polyhedra, the
combination of the number of vertices, V, minus the number of edges, E,
plus the number of faces, F, resulting from any such division of the sphere,
will invariantly be that number 2, known as the Euler characteristic of the
sphere. The variables known as V, E and F are topological properties of the
polyhedra, or, in other words, they are invariants of the polyhedra under any
kind of geometrical distortions. It is from this simple Eulerian relation, that
we can develop a systematic and, indeed otherwise rigorous, mapping of the
various, innumerable structures that present themselves, in levels of
approximation, as models for the structure of the real material world within
the domain of that area of science known as crystallography.

About a century after Euler’s relation for the polyhedra was first
proposed, as described above, the German mathematician Schlafli

introduced a simple algebraic transformation of Euler’s relation, for various
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purposes of understanding the relation better, and adopting it more
effectively in proofs [3]. Thus, Schlifli introduced two new topological
variables, like V, E and F before them, that were derived from them.
Schléfli, therefore, defined the so-called “polygonality”, hereafter
represented by n, of a polyhedron as the averaged number of sides, or edges,
circumscribing the faces of a polyhedron. He conveniently defined such a
polygonality, as n = 2E/F, where, in this instance one can see that because
each edge E straddles two faces, F, the definition is rigorous. Similarly,
Schlafli introduced the topological parameter called the “connectivity”,
hereafter represented by p, of a polyhedron as the averaged number of sides,
or edges, terminating at each vertex of a polyhedron. He conveniently
defined such a connectivity, as p = 2E/V, where, in this instance one can see
that because each edge E terminates at two vertices, V, the definition is
rigorous.

From these definitions of n and p as topological parameters of the
polyhedra, Schlifli was able to show quite straightforwardly, by algebraic
substitution, that a further relation exists among the polyhedra in terms of
their Schléfli symbols (n, p). [3] It is from this equation, the Schléfli relation,
shown as Equation (2) below, that one can see that not only do the polyhedra
rigorously obey 2, but it is also true that their indices as (n, p), that serve as
solutions to 2, in addition lead to a convenient 2-dimensional grid, or
Schlifli space, over which the various polyhedra can be unambiguously
mapped, as has been explained by Wells in his important 1977 monograph
on the subject [4].
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Figure 1 due to Wells [4], below, illustrates the application of this
type of Schlidfli mapping for the regular Platonic polyhedra, where one sees
that the point that belongs to the origin of this mapping, is indeed given by
the Schléfli symbol (n, p) = (3, 3). The symbol (3, 3) represents the Platonic
solid known as the tetrahedron, or by the symbol “t” in the map, known
since Antiquity by the Greeks. Thus, as it is cast as the origin of this
mapping of polyhedra, it is apparently, the only self-dual polyhedron.
Similarly (4, 3) is the Platonic solid of the Greeks known as the cube, or “c”
in the map, (5, 3) is the Platonic solid of the Greeks known as the
dodecahedron, or “d” in the map, (3, 4) is the Platonic solid of the Greeks
known as the octahedron, or “o0” in the map, and (3, 5) is the Platonic solid

(1952
1

of the Greeks known as the icosahedron, or “i” in the map.

Figure 1

Although the mapping of the Platonic polyhedra, shown in Figure 1,
indeed involves only those polyhedra in which the ordered pairs (n, p) are
integers, it is readily transparent that one could magnify the map to include
those polyhedra in which the polygonality “n” is fractional, these are the so-
called Archimedean polyhedra, discovered by Archimedes in Ancient
Greece [5]. In addition, the map could be magnified to include those
polyhedra in which the connectivity “p” is fractional, these are the so-called
Catalan polyhedra, discovered in Europe in the 19" century [6]. And finally,
the so-called Wellean polyhedra [7], discovered in the 21* century [8], in

which both indexes, “n” and “p”, are fractional, could be mapped in this

Schlifli space of the polyhedra, without any loss of mathematical rigor.
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2. Mapping of Tessellations & Networks in Schlafli Space

Wells also suggested [4], that the tessellations, which are structures or tilings
extended into 2-dimensions and filling the plane, could have nominal labels
attached to them, in the form of the Schléfli symbols (n, p), that, while not
leading to rational solutions of the Schlifli relation, were, still it seems,
rigorously defined from inspection of the topology of these elementary
tessellations. Thus in order to extend the mapping in Schléfli space, the
space of (n, p), some loss of rigor with regard to the Schlifli relation for the
polyhedra had to be introduced, when considering the patterns known as
tessellations. Wells, therefore included, explicity, the mapping of the square
grid, given by the Schlifli symbol (4, 4), and the honeycomb grid, given by
(6, 3), as well as the closest-packed tessellation, given by (3, 6), in his
topology mapping, shown in Figure 1, along with the Platonic polyhedra. He
thereby extended the mapping to the tessellations, and later he implied that
such a mapping could be extended to include the 3-dimensional (3D)
networks as well, with a concomitant further loss of mathematical rigor, in
that the values assigned as (n, p) to the various tessellations and networks
were not rigorous solutions to Equation (2).

It is also true that Wells [7], perfectly well introduced a systematic
and rigorous coding of the topology of tessellations and networks he worked
with, which is now called the Wells point symbol notation, and that this was
a simple coding scheme over the circuitry and valences, about the vertices,
in the unit of pattern of the tessellations and networks. The Wells point
symbol notation was, however, nonetheless an important development for
the rigorous mathematical basis it put the tessellations and networks on,
formally, as quasi-solutions (n, p) for the Schléfli relation shown as

Equation (2).
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Therefore, in a generic case of the Wells point symbol notation, one
could have such a symbol for an a-, b-connected, binary network, given as
(AYx(B")y, such that the exponents “a” and “b” nominally represent the
valences of the 2 vertices in the tessellation or network of interest, and the
bases “A” and “B” give the respective relative polygon sizes (circuit sizes)
in the tessellation or network, while the parameters “X” and “Y” describe
the binary stoichiometry of the network. In this generic case, we see that
“X/Y” represents the number of structural components, identified by their
topology character as (A", to the number of structural components identified
by their respective topology as (B®), that occur in this characteristic ratio in
the structure, as specified by the unit of pattern.

Despite his invention of this elegant notation, Wells, for some odd
reason, never explicitly showed how to translate the language of the Wells
point symbol (A%)x(B")y, rigorously into a Schlifli symbol (n, p), as was
later shown elsewhere. Thus Bucknum et al., in 2004 [9], showed that the
translation of the Wells point symbol into an, otherwise, from the
perspective of Equation (2), rigorous set of values (n, p) for the purpose of
mapping tessellations and networks, was achievable if one used the
following straightforward, simple formulas (applicable in this case for a
generic Wellsean, binary stoichiometry structure) for the ordered pair (n, p),
which can later be employed in the mapping of the structure, as is shown by

Equations (3).

n=(aAX+bB-Y)(aX +bY) (3a)

p=(@X+bY)(X+Y) (3b)
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It should, of course, be noted that one has to proceed with care in
using Equations (3a & 3b), in this topology analysis of structures, by
carefully normalizing the circuitry traced around the p-connected vertices of
the structure (paying careful attention to the parameters “a” and “b” above),
by rigorously translating the circuitry of a given structure, into a vertex
connectivity for the network of interest, by employing a vertex translation

table like that shown below.

Table 1

Therefore, from the use of Equations (3), for a binary stoichiometry,
Wellsean net with topology (A%)x(B")y, or some other homologous
translation formulas, as shown, for example, by Bucknum et al. for various
elementary structural cases [9], it becomes, evidently, rigorously possible to
precisely map the topology of any structure, including of course the
polyhedra, but extendable to the vast body of the known tessellations and
networks, that have been discovered and characterized crystallographically,
otherwise by their symmetry character, now by their topological character in
the form of a mapping in an extended Schlifli space, as is shown in Figure 2

below.
Figure 2
3. A Survey of the Topology of Structures

As Equations (1) & (2), and Figure 1 & 2 explicitly reveal, it is the Platonic

solids that form the basis of this mapping formulation of structures described
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in this paper. These forms, as shown in Figure 3 with their appropriate
polyhedral face symbolism [10], as discovered in Ancient Greece from the
application of pure thought, were implicated later on in Plato’s Timeas, as
the building blocks of Nature [11]. With the advent of modern
crystallographic techniques by the Bragg’s in the 20" century [12], we have
come to learn that the structure of matter does indeed often take on various
vestiges of these eternal objects. And so they have come to be important in

modern structural chemistry as elucidated by Pauling [13] and others.
Figure 3

The polyhedra, thus forming the basis of the topology map of
structures in Figure 2, and also rigorously obeying the topology relations
shown as Equations (1) & (2) above, are positioned uniquely in this
construction to support the vast space of tessellations and networks that, as
we have seen in the preceding Section, can be mapped, rigorously, in Figure
2 by the identification and proper translation of their Well’s point symbols,
as described above, into ordered pairs as Schlidfli symbols (n, p). Plato’s
great work, Timeas, thus predicted the ascendancy of the material world into
perfect forms, in which the Platonic polyhedra hold primacy and support the
overall organizational structure of matter, from which the innumerable other
polyhedral objects, and the innumerable 2D tessellations, and the
innumerable 3D networks, together all emerge as perfect objects, in this
scheme.

Later, it has been shown by Duchowicz et al. [14], that indeed
molecular structures can be represented in the scheme of Figure 2, and they

have a corresponding set of two topology relations (in addition to n = 2E/F
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and p = 2E/V), shown as Equations (4) & (5) below, that govern their

mapping into Figure 2.

V-E+F=1 (4)
r 1 1 1

= 5
n 2+p 2E )

In this way, one can see that the overall chemical topology scheme described
here, is a complete description of the topology of all matter constituting the
material world. This communication will not treat the specific applications
of Equations 4 & 5, but it will be left to the reader to refer to those
applications suggested in the literature [14].

Moving from the polyhedra and molecular fragments, as described
above, one can then map the regular tessellations as shown in Figure 4, with
the honeycomb tessellation, given by the Wells point symbol notation as 6°,
and translated into the mapping symbol or Schléfli symbol as (n, p) = (6, 3),
and the square grid, given by the Wells point symbol notation as 4°, and
translated into the mapping symbol or Schléfli symbol as (n, p) = (4, 4), and
finally, the third regular tessellation, which thus outlines the space of Figure
2 in terms of the tessellations, as the closest-packed grid, given by the Wells
point symbol notation as 3°, and translated into the mapping symbol or
Schléfli symbol as (n, p) = (6, 3).

Figure 4

One can, of course, insert all manner of hybrid tessellations, among these 3

regular ones, and generate innumerable Archimedean, Catalan and Wellsean
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tessellations. Some hybrid tessellations of the square grid-honeycomb grid
pair have been analyzed topologically by Bucknum et al. [15]. There are, of
course, an infinity of such structural tessellations, and they indeed fill the
space in the neighborhood of the borderline between the polyhedra and the
tessellations, on the one hand, and the tessellations and the networks in 3D,
on the other hand. It is also true that Wells and others [4], have identified
tessellations of the plane comprised of 5-gons & 7-gons, and their have been
tessellations of 4-gons & 6-gons that admit unstrained 8-gons, and there are
many more tessellations proposed, some of which have been taken as models
of various C allotropes [16-18], which essentially can possess any n-gons in
their pattern, provided that the restraint of being regular n-gons is relaxed.
And it is thus true, that all of this infinity of tessellations can be mapped,
rigorously, by the methods outlined above.

Finally, the map in Figure 2 outlines the 3D networks, and a
prominent member is, of course, the diamond lattice given by the Wells
point symbol 6°, which is translated [9] into the Schlifli symbol (6, 4). By
examination of Figure 2, one can see that the diamond network, given the
Schlifli symbol (6, 4), is situated just across the borderline from the 2-
dimensional honeycomb tessellation given by (6, 3) in the map. One member
of the diamond network topology, is in a cubic symmetry space group of Fd-
3m, space group #227, one of the highest symmetry space group patterns.
There are, in fact, innumerable possible polytypic patterns within the
diamond topology, several of these have been discussed recently by Wen et
al. [19] in some detail, and all of them collectively possess the same Wells
point symbol of 6°, and the corresponding Schlifli symbol of (6, 4). It is

only by their symmetry character, that the members of the diamond

10
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polytypic series can be distinguished from each other. Thus, the simplest

cubic diamond polytype, known as 3C, is shown in Figure 5 below.
Figure 5

Thus in the diamond network, which corresponds to the Platonic (integer)
topology of the Platonic polyhedra, one can readily trace the uniform 6-gon,
puckered circuitry of the network connected together by all 4-connected,
tetrahedral vertices. Diamond’s topology classifies the network as a regular,
Platonic structure-type.

Next, we move to the space between (6, 3) and (6, 4), seemingly
between 2D and 3D forms, and investigate what potential structures might
emerge along this boundary area. Such an examination turns up two distinct
families of Catalan networks, that together possess the Catalan Wells point
symbol (66)X(63)y. One can see, through this Wells point symbol notation,
that we are describing hybrid structures of the honeycomb tessellation, the
so-called graphene grid, 6°, and the diamond network, 6°. The notation “y/x”
specifies the stoichiometry of the net, in terms of the ratio of 3-connected,
trigonal planar vertices, to 4-connected, tetrahedral vertices in the hybrid
structure [20].

Thus one example of such a class of hybrid “graphene-diamond”
structures 1s shown in Figure 6, and these forms are known, by their hybrid
topology, as the “graphite-diamond hybrids”. They come in infinite series’,
in each of two varieties that are known as the ortho- form, and the para-form,
these have been elegantly described by Balaban et al. in 1994 [21].
Collectively, as a family, they possess the Schléfli symbol of (6, 3%*),

€6, 9

where the parameters “x” and “y” have the stoichiometric significance

11
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ascribed to them in the preceding paragraph. These structures, as a family,
occupy the border-line area between (6, 3) and (6, 4) in the Schlifli map in
Figure 2.

Figure 6

Yet another family of “graphite-diamond” hybrid structures to be
considered, with the Wells point symbol (66)X(63)y, and the corresponding
Schlifli symbol given by (6, 3**™), is the family of structures described
first by Karfunkel et al. [22] in 1992, as being built from the barrelene
hydrocarbon molecular fragment, and extended by the insertion of benzene-
like tiles to the parent framework, to generate many infinities of derived
structures, which all, collectively, possess the hybrid graphite-diamond
topology described above. Later, in 2001, Bucknum [23] clarified the details
of the parent such structure derived by Karfunkel et al., and he called this
structure “hexagonite” and the derived, such structures were known as the
“expanded hexagonites”. This name was assigned due to the symmetry space
group of the parent structure, in P6/mmm, space group #191, and also due to
the topology of the family of such structures, in which all circuitry over all
members of the family, are comprised of 6-gons. The topological analysis of
the hexagonite family, suggests that they begin with the Schlifli symbol (n,
p) = (6, 3% 5), and extend from there, in descending, discrete increments of
the connectivity, p, towards their termination at (n, p) = (6, 3), in the limit of
the graphene grid topology. The parent “hexagonite” is shown in two views

in Figure 7.

Figure 7

12
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It should be noted here that the so-called “graphite-diamond hybrids”,
as described above, are models for novel types of allotropes of carbon. In the
vein of this discussion, it should be mentioned here that the border-line
space in the topology map of Figure 2, between the entry in the map of (5,
3), which is the pentagonal dodecahedron, and the entry in the map (6, 3)
which is, of course, the graphene grid, lies the collective and infinite space
of the fullerene C structures [24]. So, we can see that thus, the collective
Schlifli symbol for the family of fullerenes is, in fact, given by (5%, 3),
where, in this instance, “x” is the number of pentagons in the polyhedron,
and “y” is the number of hexagons in the polyhedron [10]. The Schlifli
symbol for the parent C allotrope called “Buckminsterfullerene” (Cgp) i1s
(5”®, 3) [24], and as substitution into Equation 2 will show, this Schlifli
symbol rigorously describes the Buckminsterfullerene polyhedron fully.
Figure 8 shows a view of this polyhedron of icosahedral symmetry, and it is
clear from this view that the polyhedron is uniformly 3-connected, (as the

Schlifli symbol reveals, the fullerenes are Archimedean) and comprised

entirely of 5-gon and 6-gon circuitry.

Figure 8

Yet a final 3D network to be mentioned in this connection, which is a
model of a 3-,4-connected network of C, as opposed to a straight “graphite-
diamond” hybrid, lying between (6, 3) and (6, 4) of Figure 2, or a fullerene
polyhedron, lying between (5, 3) and (6, 3) of Figure 2, as in the preceding
discussions with respect to allotropes of C; is the so-called “glitter” network

of C invented by Bucknum et al. in 1994 [25]. This structure can be

13
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envisioned as being constructed from a 1,4-cyclohexadiene building block,

and it is shown in Figure 9.
Figure 9

As can be seen in Figure 9, the Wells point symbol for this Wellsean
network is given by (6°8*)(678),, and derived from this, is its Schlifli symbol
of (7, 3'%) [9]. It is comprised of 6-gons admixed with 8-gons, in its
topology, and an admixture of two trigonal vertices for every one tetrahedral
vertex in its connection pattern. This particular C network has been
important from the perspective of the 3-dimensional (3D) resonance
structures which can be drawn over it, see Figure 10, and there have been

some favorable indications that its synthesis has been achieved [26-27].
Figure 10

Other inorganic networks that are of interest, that are not C allotropes,
or models of C allotropes, would include the Archimedean Cooperite
network, the structure of the minerals PtS and PdO [13], shown in Figure 11,
which is a 4-connected network comprised of an equal mixture of tetrahedral
and square planar vertices, both of which are distorted in their geometries
[22].

Figure 11

As Figure 11 indicates, taking both tetrahedral and square planar vertices as

equally 4-connected, one can thus assign an Archimedean topology to this

14
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network, with a Wells point symbol of (4°8%)(4°8?), and a Schlifli symbol of
(6*°, 4) [9]. In this case, the network nominally is binary, with two distinct
types of connectivity, and an apparently Wellsean topology associated with
this, but, in fact in this instance, we have a 4-connected network where the
square planar vertices (with 4 independent circuits) are viewed as equivalent
in topology (if distorted) versions of the tetrahedral vertices (with 6
independent vertices).

Yet another inorganic network includes, but is not limited to, the
Catalan fluorite network [13], the structure of a number of mineral fluorides

including CaF,, shown in Figure 12.
Figure 12

This densely connected network is comprised of 4-connected tetrahedral
vertices (the fluoride, F~ sites at (Y4, Y4, Y4)), together with 8-connected cube-
centered vertices (the calcium, Ca’" sites at (0, 0, 0)), which are connected to
each other through a uniform set of 4-gons. The topology of this network
can be represented by the Wells point symbol (4°*)(4°%),, and this can be
translated into a Catalan Schlifli symbol of (4, 5') [9]. It can be mapped in
Figure 2 just beyond the entry (4, 5).

Still another inorganic structure-type we can provide the topology of,
is the rocksalt (or primitive cubic) lattice [13], which is the structure of a
number of inorganic alkali metal halides and alkaline earth chalcogenides.

The rocksalt lattice is shown in Figure 13 below.

Figure 13

15



Nature Precedings : hdl:10101/npre.2008.1587.1 : Posted 12 Feb 2008

Also known as the primitive cubic structure-type, the rocksalt lattice is
comprised uniformly of octahedral 6-connection in all 4-gon circuitry. The
Wells point symbol for the network is given as 4'%, and this can be translated
into a Schléfli symbol for the network of (4, 6) [9]. Because this rocksalt
network is of a Platonic (regular, integer) topology, it can readily be seen
where it maps in Figure 2. It represents, structurally, an extension into 3-
dimensions (3D) of the square grid 4*, or (4, 4) which extends in 2D,
through a layering, in exact register, of other square grids onto a parent
square grid, and their interconnection through perpendicular interlayer
bonding through the respective vertices.

As a final inorganic structural-type that we can analyze here
topologically in this Section, we have the so-called body-centered cubic
(bee) structure of CsCl [13], and a number of inorganic structures including
alkali metal halides and alkaline earth chalcogenides and other materials.

The bcece structure-type is shown here in Figure 14.

Figure 14

It is uniformly comprised of 8-connected, cube-centered vertices that are
mutually interconnected by all 4-gon circuits in the net. The topology of the
bee lattice can be specified by 4%, or by the corresponding Platonic Schlifli
symbol of (4, 8) [9].

There are, of course, innumerable other network structures that
possess 3-dimensional geometries, one only has to look at the exhaustive
works of O’Keeffe et al. to discern the scope of this field [28]. In the present
discussion, we move, in the next Section, into the area of the topological

analysis of some networks in 3-dimensions that exhibit rather odd Schlafli

16
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symbols (n, p). These networks, the oldest of which was identified only in
1951 (Waserite) [29], and the others of which were identified only in 1988
(Kentuckia) [30], and 2005 (Moravia) [31], suggest from the computation of
their respective Schléfli symbols (n, p), by the methods outlined in Section 2
and Equation (3) above, that such numbers represent not only topological
parameters of these networks, but they coincidently and fortuitously can be

construed as rational approximations, in various instances, to the

transcendental mathematical constants ¢, e and .

4. Rational Approximations to ¢, e and = and the Topology of Matter
Certain material networks, including the CaCuO, [30] (Kentuckia network
[32]) structure-type, that is the progenitor for all of the superconducting
cuprates, and the so-called Moravia structure-type [33], that is the proto-type
structure for a number of coordination network (also called metal-organic
frameworks or MOF’s) structural compositions [31], and the so-called
Waserite structure-type [29], that is the structure of the anionic, platinate
sublattice of the ionic conducting lattice, known as sodium platinate
(NaPt;0,4), have here, through topological analysis, been shown, either to
have a network polygonality, n, (Kentuckia network) the value of which
serves as a rational approximation to the transcendental mathematical
constant 7, or, alternatively, they have a network connectivity, p, the value
of which serves as a rational approximation to the product of the
transcendental mathematical constants e and ¢ (Moravia network), or e and ©t
(Waserite network).

The Kentuckia structure-type, proposed by Bucknum et al. in 2005
[32], is the pattern adopted by the high temperature superconducting cuprate
composition, it is CaCuO, [30] that adopts this pattern, which is the

17
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progenitor to all the superconducting cuprates discovered so far. This
tetragonal structure-type lies in space group P4/mmm, #123 and is shown in

Figure 15 below.

Figure 15

It can be seen from Figure 15 that this tetragonal oxide, bears a relation to
the cubic perovskite (BaTiOs, [13]) structure-type which lies in the cubic
space group Im-3m, not shown here, in which, by removal of an axial pair of
oxygen vertices, one can generate the Kentuckia structure-type from the
perovskite structure-type. However, it should be pointed out that the
perovskite structure-type is a 6-,12-connected network, in which the
transition metal titanium and chalcogenide oxygen centers, attain octahedral
6-coordination, while the alkaline earth barium cation bears a closest packed
coordination sphere of 12. Whereas in the Kentuckia structure-type, the
lattice, by great contrast as can be seen in Figure 15, bears an oxygen vertex
with a square planar, 4-connected coordination, and the transition metal
copper vertex bears an octahedral, 6-connected coordination, while the
alkaline earth calcium cation is in cube-centered, 8-fold coordination. It is a
ternary, 4-,6-,8-connected tetragonal structural pattern, as is described in
Figure 15.

Thus the connectivity in Kentuckia, is that of a ternary 4-,6-,8-
connected structural-type, while the connectivity in perovskite appears to be
that of a binary 6-,12-connected network topology. It appears that all the
circuitry in perovskite is comprised of 4-gons with, perhaps, the
stoichiometry AB,, in which the vertex “A” is in 12-connected, closest-

packed topology, and the vertex “B” 1is 6-connected, octahedral
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coordination. This leads to a Wells point symbol for perovskite of (4°°)(4'%),
and a Schlidfli symbol of (n, p) = (4, 7.2). Where, as a reference, the
hexagonal closest packed (hcp) and cubic closest packed (ccp) networks,
have the Wells point symbol 3%, and a Schlifli symbol of (n, p) = (3, 12). In
contrast, we see that the polygonality in the Kentuckia pattern, as revealed in
Figure 15, is a composite of 4-gons and 6-gons, with the Wells point symbol
for the lattice being (4%)(4'%6'*)(4"%),. As Equation 6 reveals, the
polygonality, n, for this structural-type, bears an odd resemblance to the

transcendental mathematical constant ©t [31], occurring as it does, within 1%

of exactly the value of V2-r.

n = (40-4 + 12-6)/52 (6a)

n=1\2x (6b)

Turning to the Waserite network [29], which is shown to be a

relatively simple, binary 3-,4-connected network topology in Figure 16.
Figure 16

As 1s revealed in Figure 16, the 3-to-4 stoichiometry of 4-connected square
planar vertices to 3-connected trigonal planar vertices, present in the
Waserite topology, together with the Wells point symbol for this network as
(8%)3(8%),, thus demonstrates that this simple structure is indeed a binary,
Catalan network comprised of all 8-gon circuitry. Therefore it is apparent,
readily, that the polygonality is simply given by n = 8, in this pattern. But as

has been described previously for this so-called Waserite network [34], the
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connectivity index of it, as shown in Equations 7, suggests that its topology

is more complex than meets the eye.

p=(34+43)7 (7a)

p=(2/5)en (7b)

As Equation 7 reveals, it is a fact of simple arithmetic that the
weighted average connectivity of the Waserite network, given by the symbol
p, is in fact equal, to better than 99 parts in 100, to (2/5)e-n. Here = is, the
familiar ratio of a circle’s circumference to its diameter [35], and e is the
natural base of exponentials [36]. These numbers are transcendental, as they
are infinite, non-repeating fractions [35, 36]. An identical relation will also
hold for the other structures patterned on a stoichiometry of four 3-
connected vertices-to-three 4-connected vertices including, for example, the
rhombic dodecahedron (given by the Catalan Wells point symbol as
(4%)6(4)s), and the well-known phenacite network of Bragg et al. (not
shown, given by the Wellsean ternary Wells point symbol (8°)(6°);(6°8°)s
[371)

Other relations emerging from such consideration of the connectivity
index, p, in the Waserite structural-type include Equation 8 [34], known
hereafter as the Timeas relation, for its suggestion of a Cosmogony based

upon the 5 Platonic solids as enunciated by Plato [11].

(1)(2.3333333...ccee yem = (4)(5) (8)
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Equation 8 suggests the ultimate simplicity of definitions of e and r, through
an elementary relationship involving only the first 5 counting numbers, or
alternatively, the first 4 prime numbers [34].

Finally, in this survey of crystalline structure-types which exhibit
relations to the transcendental mathematical constants, in their structural
topology, we turn to the so-called Moravia network [31, 33], first posited as
a potential structural-type in 2005 by Bucknum et al. This Moravia network
has, in fact, turned out to be the structure adopted by several coordination
networks known as metal-organic-frameworks (MOF’s) [31]. It is readily
seen to be a Wellsean, 3-,8-connected network upon careful inspection of the

drawing for valences, and tracing of circuitry in Figure 17.
Figure 17

The Wells point symbol for the Moravia structural-type is encoded as
(476°8'%)5(4”)g, it is thus a complex, Wellsean network composed of two
connection motifs, the trigonal planar, 3-connected, and cube-centered, 8-
connected, vertices, held together in circuits of 4-gon, 6-gon and 8-gon sizes.
The complex Well’s point symbol for the network, belies in this instance,
the relatively high symmetry of the structure, in which Moravia is lying in
the cubic space group Pm-3m, #221.

If we take the point symbol for the network, and analyze it according
to Equations (3) described above, the Well’s point symbol translation
formulas, one obtains the result that the weighted average polygonality for
the network is indeed given by n = 6. The Waserite net is thus pseudo-
Catalan, with an integer polygonality of 6, that is nonetheless the result of

averaging over 4-, 6- and 8-gons in its structural pattern. Upon calculating
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the connectivity index, p, for Moravia, however, we get the result shown in

Equation 9.

p=(38+83)11 (9a)

p=eco (9b)

Thus it is seen that the connectivity index, p, of Moravia, as a 3-,8-connected

network, is equivalent, to better than 99 parts in 100, to the product of the
two transcendental mathematical constants ¢ [38] and e [36], given simply as
¢-e. Here, as above, e is the natural base of exponentials [36], and ¢ is the

well-known golden ratio [38], as is expressed in Equation (10).

b=N5+1)2 (10)

Equations (9), like the transformation of Equation (7) to Equation (8) above,
can be factored, interestingly, so that the relation of ¢-e evolving out of the
topology of the Moravia structure, as shown in Figure 17 above, involves the
first 6 Fibonacci numbers, F(1-to-6) (given, on the left, in Equation (11b) as
1, 1,2, 3,5, and 8), and these are related to the 10" Fibonacci number, F(10)

(given, on the right, in Equation (11b) as 55).

F(1)-F(2)-F3)-F(4)-F(5)-F(6) = (e)(¢)-F(10) (11a)

(D-(1)(2)-B3)(5)-(8) = (e)(9)-(55) (11b)
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These relations between the topology of these structures in this
Section, as 1is revealed by the computation and mapping of their
corresponding Schléfli symbols (n, p), and the transcendental mathematical
constants ¢, e and 7, that can be thus correlated to their structural character,
suggest the mathematical, and potentially scientific, richness that such

structures may lead to.

5. Conclusions
In this paper we have reviewed the basic tenets of a chemical topology
scheme, one that can be applied to classify and effectively map the
innumerable polyhedra, tessellations and networks, based upon a simple
computation of their Schldfli symbols (n, p), from translation of their
corresponding Wells point symbols. A restriction pointed up by this work, is
that all structures in such a chemical topology scheme must, indeed, be
simply connected. The phrase ““simply connected”” means that all edges, E, in
a structure, be it a polyhedron, tessellation or network, must terminate at
distinct vertices, V, in the network, where such edges, E, are known as
proper edges. A second condition on a net being ““simply connected”, is that
all faces, F, in the structure should be bounded by proper edges, E, as
defined in the preceding sentence. It is not clear, at this juncture, what form
a systematic chemical topology would take on for the ““non-simply
connected” structures. As there are innumerable non-simply connected
structures, to accompany the infinite number of simply connected structures
in Schléfli space (the space of the Schlifli symbols (n, p)), it would seem
that a topological analysis of these complex structures would be desirable
and necessary to get a more complete handling of the chemical topology of

crystal chemistry.
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The brunt of this paper has been dedicated to a survey of some of the
more prominent (well-known or obvious) organic and inorganic structure-
types. Organic structures included some well-known C allotropes, like the
regular, graphene grid and the regular, diamond network, both forms of C
known since Antiquity. And, also, more modern C forms were surveyed, like
the 3-,4-connected, Catalan graphite-diamond hybrids [21], the 3-,4-
connected, Catalan hexagonite lattices [22, 23] and the Wellsean, 3-,4-
connected glitter C form [25], for which there is currently some evidences of
their syntheses from the growth of C nanocrystals [26, 27]. Inorganic
structures included in this survey, were the 4-,8-connected, Catalan fluorite
lattice, the 4-connected, Archimedean Cooperite lattice, the 8-connected,
regular CsCl, body-centered cubic structure-type, and the 6-connected,
regular rocksalt structure-type. [13] Finally, in this survey, lattices which
admitted connections in their topology to the transcendental numbers
included the 3-,8-connected, Wellsean Moravia net, discovered in 2005 [31,
33] (related to ¢ and e, through the connectivity), the 4-,6-,8-connected,
Wellsean Kentuckia (cuprate structure-type) net, discovered in 1988 [30, 32]
(related to m, through the polygonality), and finally the 3-,4-connected,
Catalan Waserite net (platinate structure-type), discovered in 1951 [29].

The occurrence of relations to the transcendental numbers of
mathematics, in the computations of the topology character of some of these
networks, is indeed a mysterious outcome. It is not clear whether such
relations could imply that the topology of these lattices, like the Kentuckia
lattice, in which n = V27, could indeed be equated to some type of ordering
parameter for the lattice, such that by the introduction of systematic defects
in the connectivity, p (or thereby the polygonality, n) over the bulk lattice,

might lead to a corrected value of n, that asymptotically approaches the true
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value of m, and that, that might have some bearing on bulk properties of the
Kentuckia network, like the critical superconducting transition temperature,
T, in the cuprate composition CaCuO, [32]. Such considerations as these,
open up new avenues of explorations for solid state scientists based upon the

intrinsic topology character of such networks as these.

25



Nature Precedings : hdl:10101/npre.2008.1587.1 : Posted 12 Feb 2008

References
[1] M.J. Bucknum, Carbon, 35(1), 1, (1997).

[2] Leonhard Euler, Elementa doctrinae solidorum et Demonstratio

nonnularum insignium proprietatum quibus solida heddris planis inclusa

sunt praedita, Proceedings of the St. Petersburg Academy, St. Petersburg,
Russia 1758.

[3] J.J. Burckhardt, Der mathematische Nachlass von Ludwig Schlifli, 1814-
1895, in der Schweizerischen Landesbibliothek, 1% edition, Bern, 1942.

[4] A.F. Wells, Three Dimensional Nets and Polyhedra, 1* Edition, John
Wiley and Sons Inc., New York, NY 1977.

[5] M. Gardner, Archimedes: Mathematician and Inventor, 1% edition,
Macmillan Publishing, New York, NY, 1965.

[6] P.J. Frederico, Descartes on Polyhedra: A Study of the De Solidorum
Elementis, 1% edition, Springer-Verlag, New York, NY, 1982.

[7] A.F. Wells, Further Studies of Three-dimensional Nets, American
Crystallographic Association (A.C.A), Monograph #8, 1% Edition, A.C.A
Press, Pittsburgh, PA 1979.

[8] I. Peters, Science News, 160(25/26), 396, (2001).

[9] M.J. Bucknum and E.A. Castro, (MATCH) Commun. Math. Comp.
Chem., 54, 89, (2005).

[10] It appears that the 5 Platonic polyhedra obey Equation (2) of the text, if

one specifies their topology by a polyhedral face symbol, given by A®, in
which n = A and p = a, and there is no relation between this polyhedral face
symbol, A®, and the computation of V, E and F in the Euler model of
Equation (1). It is also the case, that the 5 Platonic polyhedra obey Equation
(2) of the text, if one specifies their topology by a Wells point symbol, given

26



Nature Precedings : hdl:10101/npre.2008.1587.1 : Posted 12 Feb 2008

as A®, in which (b-A) = 2E, b=F, and V is identified through inspection of
the polyhedron, then n = 2E/F and p = 2E/V, by definition.

For the Archimedean polyhedra it appears that it is only possible to
specify (n, p), for insertion into Equation (2), by encoding a polyhedral face
symbol, given as A°B°C"....... , where a is the number of A-gons, in a ratio

with b B-gons etc., for the polyhedron, and thus, in which (a-A+b-B +c-C

+ o )=2E,(a+b+c+...... )=F, and V is identified through inspection
of the polyhedron, and where finally then, n = 2E/F and p = 2E/V, by
definition. While for the Catalan and Wellsean polyhedra, by contrast, it
appears that it is only possible to specify (n, p), for insertion into Equation
(2), by encoding a Wells point symbol, given as (A%)(A"),(A°),.......... ,
where a is the number of A-gons meeting at a, and b is the number of A-
gons meeting at b etc., and X, y, z etc. specify the stoichiometry of the

polyhedron, for the Catalan or Wellsean polyhedron of interest, in which (a-

A+b-A+c-A+....... )=E,(a-x+b-y+c-z+......... )=4Fand (x +y +
Z+ ... ) =V, where finally then, n = 2E/F and p = 2E/V by definition, as
throughout.

[11] J.M. Cooper, editor, Plato: Complete Works, 1% edition, Hackett

Publishing Company, Indianapolis, IN, 1997.

[12] W.L. Bragg, The Development of X-ray Analysis, 1* edition, Dover
Publications, Inc., Mineola, NY, 1975.

[13] L. Pauling, The Nature of the Chemical Bond, 3" edition, Cornell
University Press, Ithaca, NY, 1960.

[14] P. Duchowicz, M.J. Bucknum and E.A. Castro, Journal of
Mathematical Chemistry, 41(2), 193, (2007).

27



Nature Precedings : hdl:10101/npre.2008.1587.1 : Posted 12 Feb 2008

[15] (a) M.J. Bucknum and E.A. Castro, (MATCH) Commun. Math. Comp.
Chem., 55, 57, (2006). (b) M.J. Bucknum and E.A. Castro, Solid State
Sciences, in press, (2008).

[16] R.H. Baughman, H. Eckhardt and M. Kertesz, Journal of Chemical
Physics, 87(11), 6687, (1987).

[17] (a) A.T. Balaban, C.C. Rentea and E. Ciupitu, Rev. Roum. Chim., 13,
231, (1968), (b) H. Zhu, A.T. Balaban, D.J. Klein and T.P. Zivkovic,
Journal of Chemical Physics, 101, 5281, (1994).

[18] V.H. Crespi, L.X. Benedict, M.L. Cohen and S.G. Louie, Physical
Review B, 53, R13303, (1996).

[19] B. Wen, J. Zhao, D.Si, M.J. Bucknum and T.Li, Diamond & Related
Materials, in press, (2008).

[20] M.J. Bucknum and E.A. Castro, Journal of Chemical Theory &
Computation, 2(3), 775, (2006).

[21] A.T. Balaban, D.J. Klein and C.A. Folden, Chemical Physics Letters,
217, 266, (1994).

[22] H.R. Karfunkel and T. Dressler, Journal of the American Chemical
Society, 114, 2285, (1992).

[23] M.J. Bucknum, Chemistry Preprint Archive, 2001(1), 75, (2001)

[24] J. Baggott, Perfect Symmetry: The Accidental Discovery of

Buckminsterfullerene, 1% edition, Oxford University Press, Oxford, U.K.,
1996.

[25] M.J. Bucknum and R. Hoffmann, Journal of the American Chemical
Society, 116, 11456, (1994).

[26] M.J. Bucknum and E.A. Castro, Journal of Theoretical &
Computational Chemistry, 5(2), 175, (2006).

28



Nature Precedings : hdl:10101/npre.2008.1587.1 : Posted 12 Feb 2008

[27] M.J. Bucknum and E.A. Castro, Molecular Physics, 103(20), 2707,
(2005).
[28] M. O’Keeffe and B.G. Hyde, Crystal Structures I. Patterns and

Symmetry, 1% edition, Mineralogical Society of America (M.S.A.),

Washington, D.C., 1996.

[29] J. Waser and E.D. McClanahan, Journal of Chemical Physics, 19, 413,

(1951).

[30] T. Siegrist, S.M. Zahurak, D.W. Murphy, R.S. Roth, Nature, 334, 231,

(1988).

[31] M. Dinca, A. Dailly, Y.Liu, C.M. Brown, D.A. Neumann and J.R.
Long, Journal of the American Chemical Society, 128, 16876, (2006).

[32] M.J. Bucknum and E.A. Castro, Russian Journal of General Chemistry,
76(2), 265, (2006).

[33] M.J. Bucknum and E.A. Castro, Central European Journal of
Chemistry (CEJC), 3(1), 169, (2005).

[34] M.J. Bucknum and E.A.Castro, Journal of Mathematical Chemistry,
42(3), 373, (2007).

[35] (a) P. Beckmann, A History of m, 1* edition, The Golem Press, New
York, NY, 1971. (b) D. Blatner, The Joy of =, 1% edition, Walker
Publishing Company, Inc., USA, 1997.

[36] E. Maor, e: The Story of a Number, 1% edition, Princeton University
Press, Princeton, NJ, 1994.

[37] M.J. Bucknum, B. Wen and E.A. Castro, Global Journal of Molecular
Sciences, in press, (2008).

[38] M. Livio, The Golden Ratio: The Story of ¢, the World’s most
Astonishing Number, 1% edition, New York, NY, Broadway Books, 2002.

29



Nature Precedings : hdl:10101/npre.2008.1587.1 : Posted 12 Feb 2008

Figure 1: Topology mapping of the Platonic polyhedra due to Wells
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Table 1: Vertex Connectivity, p, as a Function of Circuit Number

name vertex connectivity circuit number
trigonal planar 3 3
square planar 4 4
tetrahedral 4 6
trigonal bipyramidal 5 9
square pyramidal 5 10
octahedral 6 12
cube centered 8 24
anti-cube centered 8 28

closest packed 12 60
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Figure 2: Extended Schléfli space of the Platonic Structures
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Figure 3: The Platonic polyhedra, with their corresponding polyhedral face
symbols and Wells point symbols, comprised of the tetrahedron (3* and 3°),
the octahedron (3® and 3%), the icosahedron (3”° and 3°), the cube (4° and 4°),
and the dodecahedron (5'% and 5°)
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[6, 3) {4, 4} [3,06)

Figure 4: The Platonic tessellations, with their corresponding Wells point
symbols, given as the closest-packed grid (3°), the square grid (4*) and the
honeycomb grid (6°)
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Figure 5: Cubic diamond (3C) polytype, with the Wells point symbol (6°),

-3m)

lying in symmetry space group (Fd
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Figure 6: Representatives of the infinite families of ortho- and para-
graphite-diamond hybrid structures, with the collective Wells point symbol
(6%)(6° )y, of orthorhombic symmetry (Pmmm)
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Figure 7: Vertical and lateral views of parent hexagonite structure of the
infinite family of hexgonites, with the collective Wells point symbol
(6%)(6° )y, of orthorhombic-trigonal-hexagonal (Pmmm, P3m1 and P6/mmm)

symmetries
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Figure 8: The parent Buckminsterfullerene polyhedron, of the infinite
family of fullerenes, with the collective Schlédfli symbol for the family of
fullerenes given by (5™*), 3), and the fullerene polyhedral face symbol of
56", where “x” is the number of hexagons, and “y” is the number of
pentagons, in the fullerene, where such structures are of icosahedral (I;) and

lower symmetry
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Figure 9: Tetragonal glitter network of carbon, with Wells point symbol

given by (6°8%)(6°8),, and of space group symmetry (P4,/mmc)
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Figure 10: Resonance structures of the graphite and glitter networks of C
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Figure 11: Archimedean Cooperite network as structure of PdO and PtS,
with the Wells point symbol of (4°8")(4°8%), and of space group symmetry
(P4,/mmc)
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Figure 12: Catalan fluorite structure as the structure of CaF,, this network
can be represented by the Wells point symbol (4°*)(4%),, and lies in space
group (Fm-3m)
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Figure 13: Platonic rocksalt structure as the structure of NaCl, this network

can be represented by the Wells point symbol (4'%), and lies in space group
(Pm-3m)
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Figure 14: Platonic body-centered cubic (b.c.c.) structure as the structure of
CsCl, this network can be represented by the Wells point symbol (4**), and

lies in space group (Im-3m)
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Figure 15: Wellsean Kentuckia (ABC,) structure-type as the structure of the
superconducting cuprate salt CaCuO,, this network can be represented by

the Wells point symbol (4*)(4'%6'%)(4'%),, and lies in space group (P4/mmm)

45



Nature Precedings : hdl:10101/npre.2008.1587.1 : Posted 12 Feb 2008

| S PN, N ——

Figure 16: Catalan Waserite structure-type as the structure of the ionic
conducting platinate salt NaPt;0,4 (sodium cations not shown), this network
can be represented by the Wells point symbol (8*);(8%)s, and lies in space
group (Pm-3n)
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Figure 17: Wellsean Moravia structure-type as the structure of several
coordination networks (metal organic frameworks, MOF’s), this network
can be represented by the Wells point symbol (4'6°8'%);(4°)s, and lies in
space group (Pm-3m)
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