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ABSTRACT  

A parametric framework for the analysis of transcriptome data is demonstrated to 

yield coincident results when applied to data acquired using two different microarray 

platforms. Discrepancies among transcriptome studies are frequently reported, casting 

doubt on the reliability of collected data. The inconsistency among observations can be 

largely attributed to differences among the analytical frameworks employed for data 

analysis. The existing frameworks normalizes data against a standard determined from 

the data to be analyzed. In the present study, a parametric framework based on a strict 

model for normalization is applied to data acquired using an in-house printed chip and 

GeneChip. The framework is based on a common statistical characteristic of microarray 

data, and each data is normalized on the basis of a linear relationship with this model. In 

the proposed framework, the expressional changes observed and genes selected are 

coincident between platforms, achieving superior universality of data compared to other 

methods.    

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
74

6.
1 

: P
os

te
d 

1 
A

pr
 2

00
8



 

INTRODUCTION 

The transcriptome, the contents of mRNA, determines the functions of a cell. 

Microarrays are currently widely used to acquire comprehensive transcriptome 

information, and thus have greatly facilitated transcriptome research. However, an 

appropriate intellectual framework 1 for systematizing the data collected using various 

microarrays has yet to be developed. Due to the lack of a framework that yields 

consistent results among different platforms, the reliability of numerous measurements 

in the literature may have been compromised, particularly when comparisons among 

different platforms have been performed, raising many questions and criticisms 2-6. In 

the present study, a parametric framework is demonstrated to yield excellent 

coincidence when applied to data acquired using two different microarray platforms. In 

this framework, data is normalized with respect to a statistical characteristic common to 

all measurements and the data is compared to the model using a linear relationship. 

Superior coincidence has previously been demonstrated using this framework for data 

acquired using a two-colored printed chip and the GeneChip (Affymetrix, Santa Clara, 

CA), for which other frameworks based on MAS5 7, RMA 8 and LOWESS 9 do not 

reveal any coincidence. The proposed framework thus appears to provide a means for 

the seamless integration of information obtained in transcriptome studies. The highly 

reliable data thus obtained may also provide clues for decoding the hereditary traits 

within the genome 10, which may in turn lead to rapid progress in the life sciences. 

Achieving universality in microarray data has proved to be more problematic than 

may have been expected. The essential character of a transcript is determined by its 

concentration as the transcript acts as a template for the translation process, and the rate 
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of translation is linear when compared to the concentration of the template in the 

cytosol. However, concentrations cannot be measured using current microarray systems. 

Measurement of transcripts therefore requires that RNA samples be isolated from tissue, 

for which the collection rates and cytosol volumes are difficult to estimate. 

Consequently, even if the mass of each transcript in a sample can be determined, the 

concentrations cannot be calculated. This practical imprecision is further complicated 

by the variety of platforms available for microarray systems, which differ with respect 

to the probe sensitivity of the hybridization systems and the nucleotide sequences used. 

The potential errors and biases will also differ between platforms, and the level of 

additive noise and saturation will vary according to the measurement approach. Such 

noise and error contribute to further discrepancies among data sets.  

To achieve the universality of data and resolve the problems associated with 

incompatibility, a unified intellectual framework 1 is therefore required. However, 

relatively little attention has been paid to the development of such a data framework 11. 

Without an adequate framework that is not affected by measurement sensitivity and 

background, even the ratios of expression levels cannot be estimated correctly as these 

are framework dependent.  

A parametric framework is expected to be suitable for achieving the universality of 

data. The framework presented here is based on thermodynamic models describing the 

formation of the transcriptome in a cell 10 and the detection of RNA by hybridization 11. 

These models assume signal responses that are linear relative to the concentration of 

transcripts, and the suitability of the models has been verified by ensuring that the 

expected data distribution (i.e., lognormal) is obtained in actual measurements. These 

measurements also revealed the lowest value unaffected by additive noise and the 
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highest value unaffected by saturation, since the data diverge from the expected pattern 

at these limits 12. Although the effects of probe sensitivity remain in the normalized data 

11, such effects are cancelled when the ratios between samples are taken. Consequently, 

the obtained ratios are expected to represent only those ratios between concentrations in 

sample cells.      

In the present study, the proposed parametric framework is applied to data obtained 

using two different platforms. The data were obtained from a rat toxicology project 

study 13 in which rats were administered with various chemicals. Multi-sample RNA 

isolated from rat organs was then hybridized to two platforms: an in-house microarray 

(ToxArray III), and the GeneChip microarray in three different laboratories 14, 15. The 

ToxArray III is a typical microarray on slide glass, consisting of a single 60 mer probe 

per gene, and two samples are measured simultaneously per chip. In contrast, the 

GeneChip consists of 11 perfect match (PM) 25 mer probes per gene, and a single 

sample is measured per chip. While differences in the measurement positions of each 

transcript could alter the obtained information, the overall trend in the information 

obtained from each of the two platforms should coincide. In this report, the coincidence 

of information is checked by examining the measured logarithmic ratios and gene 

candidates that may be affected by Safrol 15 treatment. In order to evaluate the 

methodology, GeneChip data were also normalized using both MAS5 7 and RMA 8; 

MAS5 is the original method described by the manufacturer and involves classification 

of genes into “Present”, “Marginal”, and “Absent” in addition to normalization and 

summarizing of data. RMA is a widely used alternative based on the quantile method. 

Data for ToxArray were also normalized using the LOWESS method 9.  
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RESULTS 

Data distribution 

The statistical characteristics of the data were determined using normal QQ plots (Fig. 

1). Although the signal intensity follows a lognormal distribution over a certain range 

for both chips, there is a marked difference in the valid intensity range between the two 

chips. The narrower valid range for ToxArray data suggests a higher level of additive 

noise. The distribution of ToxArray data has a larger scale parameter than that of 

GeneChip data, with median values of 1.02 and 0.685, respectively. The dynamic range 

of signals, estimated from the ratio of the strongest to weakest signal for 10,000 

measurements, is 2×105 for GeneChip, and 1×108 for ToxArray. The higher sigma value 

is likely to result in measurements exceeding the limits of the scanner, which usually 

covers a range of 104–105. Additionally, unevenness in hybridization, as observed from 

the pseudo images 16, was substantially higher for ToxArray (see supplemental data).   

 

Coincidence of logarithmic ratios between chip platforms  

For the genes common to GeneChip and ToxArray (4433 rat genes), the logarithmic 

ratios determined by different frameworks are compared in Fig. 2. In the parametric 

framework, the logarithmic ratios are coincident in the valid signal range (Fig. 2(a)). 

Outside of the valid range however, the ToxArray data become substantially divergent, 

while the GeneChip data remain relatively close to the y = x line. This may indicate the 

noise reduction effect associated with the GeneChip due to the averaging of multiple 

PM cells for each gene. In contrast, larger differences were observed between the 

LOWESS- and RMA-normalized data (Fig. 2(b)). The coincidence between LOWESS 

and MAS5 results is very poor for data labeled “Absent” in MAS5 (Fig. 2(c)), but 
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improved coincidence was observed for the “Present” data, although such a relationship 

should not always be expected; for example, almost no coincidence was observed in 

other cases (supplementary data).   

 

Coincidence in selected genes 

The lists of genes exhibiting expressional changes larger than the threshold level 

(METHODS) are compared between the two platforms in Fig. 3. A large overlap in the 

lists for each platform is observed using the parametric framework. This comparison 

also reveals differences in the detection power of the chips. For example, 319 genes 

selected by GeneChip were out of the detection range of ToxArray. Comparisons 

between LOWESS and RMA or MAS5 methods resulted in a markedly smaller overlap 

of selected genes. Many genes were selected by only one of the platforms, indicating 

that there are substantial differences that exist between platforms that are not considered 

by the parametric framework. Such conflicts suggest the inclusion of more false 

positives than expected for the test (METHODS). 

A synergy of selected genes was also observed. In estimating the physiological 

condition of the sample, the simultaneous selection of a group of genes indicative of a 

biological event is a more reliable indicator of that event than the selection of a single 

pertinent gene. In the present case, the parametric framework reveals an increase in 

genes related to proteolysis by proteasomes and metabolism of steroids, and a reduction 

in genes related to antigen presentation via MHC class II as major components of the 

gene list (Fig. 3, lower rows). In other frameworks, however, none or only a few of 

these genes were selected, highlighting the detection power of the parametric 

framework. 
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DISCUSSION 

The parametric framework appears to provide superior reproducibility, has greater 

testing power, and a lower false-positive rate than existing frameworks. In the present 

study, although the purpose and subjects of measurement were identical, the analytical 

results were not coincident between platforms. The degree of coincidence and conflict 

appears to be largely dependent on the framework employed for the analysis of acquired 

data. Many of the discrepancies in the information obtained from the two platforms 

considered here can be attributed to differences in the fundamental philosophies of the 

frameworks that have conventionally been applied to the respective platforms, and not 

to inherent differences in the capacities of the chip platforms. This is evidenced by the 

greater coincidence achieved between data acquired using different platforms when 

analyzed using the parametric framework. 

Each of the frameworks normalizes and compares data using a set of hypotheses and 

assumptions that form the fundamental basis of the respective frameworks 1. In the 

parametric framework, chip data are normalized using a distribution model as the 

standard, whereas in the other frameworks, a standard is sought among the data sets. For 

example, the standard is determined for a pair of data in LOWESS 9 and shift-log 17, and 

from the means of data quantiles in RMA. Consequently, the normalization of a data set 

in existing frameworks is affected by all of the data sets being processed at the same 

time. This dependency on other data sets can be expected to adversely affect the 

uniformity of the analysis, which becomes apparent when comparing information 

among different studies.  

Another fundamental difference is associated with the testability of the fundamentals 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
74

6.
1 

: P
os

te
d 

1 
A

pr
 2

00
8



of the framework. LOWESS and RMA inevitably fulfill the assumptions regarding the 

assumed nature of the data, that is, they take the form of stable logarithmic ratios 

(LOWESS) or identical data distributions (RMA). MAS5 contains numerous 

conditional judgments that are not based on factual knowledge. The premises of these 

frameworks therefore precludes effective evaluation of the model assumptions. The 

parametric framework, on the other hand, employs a strict model and normalization 

cannot be completed without coincidence between the model and chip data. Any test of 

validity therefore relates to the reliability of the obtained information. 

The normalization process, which tests data distribution against a model (Fig. 1), is 

useful for identifying the likely range of data. As with other measurement systems, 

microarrays inevitably contain noise. With repeated measurements such as those shown 

in Fig. 3, the noise level can be reduced by taking the means of repeats. However, the 

noise contained in each measurement may still affect analyses, particularly when small 

numbers of repeats are available. Even in such cases, the parametric framework allows 

the data range that is likely to be affected by additive noise and saturation to be clearly 

defined (Fig. 1). The usefulness of this method for data classification is clearly shown in 

Fig. 2(a), and is expected to increase the reliability of analyses by reducing the 

false-positive rate.  

The proposed parametric framework thus achieves superior universality of data and 

allows for the evaluation of data reliability, providing a means of integrating knowledge 

obtained from many different laboratories and chip platforms. 

 

METHODS 

Test animals 
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Male Fischer 377 rats (SPF, 5 weeks of age) were administered with 300 mg/kg/day 

of Safrol for up to 28 days at the Mitsubishi Chemical Safety Institute 14, 15. RNA 

samples were isolated from the liver of each test animal. 

 

Microarrays 

Identical RNA samples were investigated using GeneChip (Rat Genome 230 2.0 

array; Affymetrix) and a NEDO-ToxArray III ink-jet printed chip (6709 genes 13). These 

microarrays share an overlap of 4433 genes.  

 

Normalization 

Parametric normalization was performed using SuperNORM (Skylight Biotech, 

Akita). Other normalizations were performed using R version 2.4 18 with the 

implemented affy library 19 as follows. The scanner-estimated background was 

subtracted from the Cy3 and Cy5 data of each ToxArray chip, and the logarithmic ratios 

were stabilized by the LOWESS function 9 in R. The normalized data were separated 

into Cy3 and Cy5 channels 17 for gene selection. The GeneChip data were normalized 

and summarized using the MAS5 function or the RMA 8 function of affy 19.  

 

Comparisons of selected genes 

Genes that suggested larger effects in expressional changes relative to a predefined 

threshold were selected. The effects were estimated using treatment (n = 4) and control 

(n = 4) rats, all of which were measured identically. The effect (E) was estimated for 

each gene (g) between the logarithm forms of normalized data for treatment (T) and 

control (C) using data from the ith chip as follows. 
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Here, ng,T and ng,C are the numbers of available data for the treatment and the control. 

The threshold of the selection was determined using the mean of sample variances (sg
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The threshold level (L) was then determined using the expression 
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g

n

s
L ∑×=

2

3 , 

where ngenes is the number of the gene. Genes that display |Eg| values larger than L were 

selected. In the parametric framework, only data in the valid range were used. In cases 

where ng,T or ng,C was less than 3, the gene was excluded. In MAS5, only “Present” data 

were used. Assuming the effects of biological conditions and experimental error are 

normally distributed, the expected false positive rate is 0.27% (12 cases) of the gene 

comparisons. Standard statistical tests such as the Student’s t test or ANOVA were not 

employed because both estimate the threshold in a gene-wise manner and the number of 

total measurements was considered insufficient. Such tests may also be unfavorable for 

toxicological applications due to oversensitivity when variances are small. If small 

differences can be detected using a sufficiently large data set and a reference pattern of 

transcriptome changes can be established, it may be possible to conduct experiments 

on-site using a limited number of chips. However, comparison of on-site data with a 

reference pattern will be difficult because the information obtained using a small 

number of measurements may contain fluctuations attributable to noise, resulting in an 
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elevated false-positive rate.  
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Figure 1. Distribution of normalized data. Signals obtained for the same RNA sample 

are shown in normal QQ plots. (a) Spots other than controls from NEDO ToxArray III, 

and (b) PM data from GeneChip. Red line denotes y = x. Arrows denote valid range of 

data with respect to model fit. 
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Figure 2. Coincidence in log2 ratio between chip platforms. Differences in transcripts 

between Safrol-administrated sample and mock control are measured using GeneChip 

and NEDO ToxArray III. Data plotting on y = x line (green) are coincident between 

platforms. Colored plots denote “out of detection” judgment by the respective 

frameworks. (a) Parametric framework. Colored plots denote signals out of the valid 

range of the parametric model (GeneChip, blue; ToxArray, orange). Residual root mean 

square (RMS) between platforms in valid range (average difference) is 0.210 (1.16 fold). 

(b) LOWESS (ToxArray) vs. RMA (GeneChip). Residual RMS is 0.357 (1.28 fold).  

(c) LOWESS (ToxArray) vs. MAS5 (GeneChip). Blue plots denote “Absent” MAS5 

data. Residual RMS for “Present” data is 0.283 (1.21 fold). 
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Figure 3. Summary of genes selected using an average level of estimated noise 

(METHODS). (Upper) Coincidence between selected gene lists. Values denote number 

of selected genes. Signals outside of the valid model range are omitted as shown. 

Comparisons of logarithmic ratios are shown in the supplementary data. (Lower) 

Functions of cross-selected genes from gene titles and biological processes of gene 

ontology provided by the chip manufacturer.  
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