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ABSTRACT

A parametric framework for the analysis of transcriptome data is demonstrated to
yield coincident results when applied to data acquired using two different microarray
platforms. Discrepancies among transcriptome studies are frequently reported, casting
doubt on the reliability of collected data. The inconsistency among observations can be
largely attributed to differences among the analytical frameworks employed for data
analysis. The existing frameworks normalizes data against a standard determined from
the data to be analyzed. In the present study, a parametric framework based on a strict
model for normalization is applied to data acquired using an in-house printed chip and
GeneChip. The framework is based on a common statistical characteristic of microarray
data, and each data is normalized on the basis of alinear relationship with this model. In
the proposed framework, the expressional changes observed and genes selected are
coincident between platforms, achieving superior universality of data compared to other

methods.
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INTRODUCTION

The transcriptome, the contents of mMRNA, determines the functions of a cell.
Microarrays are currently widely used to acquire comprehensive transcriptome
information, and thus have greatly facilitated transcriptome research. However, an
appropriate intellectual framework * for systematizing the data collected using various
microarrays has yet to be developed. Due to the lack of a framework that yields
consistent results among different platforms, the reliability of numerous measurements
in the literature may have been compromised, particularly when comparisons among
different platforms have been performed, raising many questions and criticisms #°. In
the present study, a parametric framework is demonstrated to yield excellent
coincidence when applied to data acquired using two different microarray platforms. In
this framework, data is normalized with respect to a statistical characteristic common to
all measurements and the data is compared to the model using a linear relationship.
Superior coincidence has previously been demonstrated using this framework for data
acquired using a two-colored printed chip and the GeneChip (Affymetrix, Santa Clara,
CA), for which other frameworks based on MAS5 7, RMA ® and LOWESS ° do not
reveal any coincidence. The proposed framework thus appears to provide a means for
the seamless integration of information obtained in transcriptome studies. The highly
reliable data thus obtained may also provide clues for decoding the hereditary traits
within the genome *°, which may in turn lead to rapid progress in the life sciences.

Achieving universality in microarray data has proved to be more problematic than
may have been expected. The essential character of a transcript is determined by its

concentration as the transcript acts as a template for the trandation process, and the rate
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of trandation is linear when compared to the concentration of the template in the
cytosol. However, concentrations cannot be measured using current microarray Systems.
Measurement of transcripts therefore requires that RNA samples be isolated from tissue,
for which the collection rates and cytosol volumes are difficult to estimate.
Consequently, even if the mass of each transcript in a sample can be determined, the
concentrations cannot be calculated. This practical imprecision is further complicated
by the variety of platforms available for microarray systems, which differ with respect
to the probe sensitivity of the hybridization systems and the nucleotide sequences used.
The potential errors and biases will also differ between platforms, and the level of
additive noise and saturation will vary according to the measurement approach. Such
noise and error contribute to further discrepancies among data sets.

To achieve the universality of data and resolve the problems associated with
incompatibility, a unified intellectual framework ' is therefore required. However,
relatively little attention has been paid to the development of such a data framework .
Without an adequate framework that is not affected by measurement sensitivity and
background, even the ratios of expression levels cannot be estimated correctly as these
are framework dependent.

A parametric framework is expected to be suitable for achieving the universality of
data. The framework presented here is based on thermodynamic models describing the
formation of the transcriptome in a cell *° and the detection of RNA by hybridization *.
These models assume signal responses that are linear relative to the concentration of
transcripts, and the suitability of the models has been verified by ensuring that the
expected data distribution (i.e., lognormal) is obtained in actual measurements. These

measurements also revealed the lowest value unaffected by additive noise and the
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highest value unaffected by saturation, since the data diverge from the expected pattern
at these limits 2. Although the effects of probe sensitivity remain in the normalized data
1 such effects are cancelled when the ratios between samples are taken. Consequently,
the obtained ratios are expected to represent only those ratios between concentrations in
sample cells.

In the present study, the proposed parametric framework is applied to data obtained
using two different platforms. The data were obtained from a rat toxicology project
study *2 in which rats were administered with various chemicals. Multi-sample RNA
isolated from rat organs was then hybridized to two platforms. an in-house microarray
(ToxArray 111), and the GeneChip microarray in three different laboratories ** *°. The
ToxArray 111 is atypical microarray on slide glass, consisting of a single 60 mer probe
per gene, and two samples are measured simultaneously per chip. In contrast, the
GeneChip consists of 11 perfect match (PM) 25 mer probes per gene, and a single
sample is measured per chip. While differences in the measurement positions of each
transcript could alter the obtained information, the overall trend in the information
obtained from each of the two platforms should coincide. In this report, the coincidence
of information is checked by examining the measured logarithmic ratios and gene
candidates that may be affected by Safrol *° treatment. In order to evaluate the
methodology, GeneChip data were also normalized using both MAS5 7 and RMA &;
MASS is the original method described by the manufacturer and involves classification
of genes into “Present”, “Margina”, and “Absent” in addition to normalization and
summarizing of data. RMA is a widely used aternative based on the quantile method.

Data for ToxArray were also normalized using the LOWESS method °.
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RESULTS
Data distribution

The statistical characteristics of the data were determined using normal QQ plots (Fig.
1). Although the signal intensity follows a lognormal distribution over a certain range
for both chips, there is a marked difference in the valid intensity range between the two
chips. The narrower valid range for ToxArray data suggests a higher level of additive
noise. The distribution of ToxArray data has a larger scale parameter than that of
GeneChip data, with median values of 1.02 and 0.685, respectively. The dynamic range
of signals, estimated from the ratio of the strongest to weakest signal for 10,000
measurements, is 2x10° for GeneChip, and 1x10° for ToxArray. The higher sigma value
is likely to result in measurements exceeding the limits of the scanner, which usually
covers arange of 10°-10°. Additionally, unevenness in hybridization, as observed from

the pseudo images *°, was substantially higher for ToxArray (see supplemental data).

Coincidence of logarithmic ratios between chip platforms

For the genes common to GeneChip and ToxArray (4433 rat genes), the logarithmic
ratios determined by different frameworks are compared in Fig. 2. In the parametric
framework, the logarithmic ratios are coincident in the valid signal range (Fig. 2(a)).
Outside of the valid range however, the ToxArray data become substantially divergent,
while the GeneChip data remain relatively close to the y = x line. This may indicate the
noise reduction effect associated with the GeneChip due to the averaging of multiple
PM cells for each gene. In contrast, larger differences were observed between the
LOWESS- and RMA-normalized data (Fig. 2(b)). The coincidence between LOWESS

and MASS results is very poor for data labeled “Absent” in MAS5 (Fig. 2(c)), but
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improved coincidence was observed for the “Present” data, although such a relationship
should not always be expected; for example, almost no coincidence was observed in

other cases (supplementary data).

Coincidence in selected genes

The lists of genes exhibiting expressional changes larger than the threshold level
(METHODYS) are compared between the two platformsin Fig. 3. A large overlap in the
lists for each platform is observed using the parametric framework. This comparison
also reveds differences in the detection power of the chips. For example, 319 genes
selected by GeneChip were out of the detection range of ToxArray. Comparisons
between LOWESS and RMA or MA S5 methods resulted in a markedly smaller overlap
of selected genes. Many genes were selected by only one of the platforms, indicating
that there are substantial differences that exist between platforms that are not considered
by the parametric framework. Such conflicts suggest the inclusion of more false
positives than expected for the test (METHODYS).

A synergy of selected genes was aso observed. In estimating the physiological
condition of the sample, the simultaneous selection of a group of genes indicative of a
biological event is a more reliable indicator of that event than the selection of a single
pertinent gene. In the present case, the parametric framework reveas an increase in
genes related to proteolysis by proteasomes and metabolism of steroids, and a reduction
in genes related to antigen presentation via MHC class |l as major components of the
gene list (Fig. 3, lower rows). In other frameworks, however, none or only a few of
these genes were selected, highlighting the detection power of the parametric

framework.
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DISCUSSION

The parametric framework appears to provide superior reproducibility, has greater
testing power, and a lower false-positive rate than existing frameworks. In the present
study, although the purpose and subjects of measurement were identical, the analytical
results were not coincident between platforms. The degree of coincidence and conflict
appears to be largely dependent on the framework employed for the analysis of acquired
data. Many of the discrepancies in the information obtained from the two platforms
considered here can be attributed to differences in the fundamental philosophies of the
frameworks that have conventionally been applied to the respective platforms, and not
to inherent differences in the capacities of the chip platforms. This is evidenced by the
greater coincidence achieved between data acquired using different platforms when
analyzed using the parametric framework.

Each of the frameworks normalizes and compares data using a set of hypotheses and
assumptions that form the fundamental basis of the respective frameworks *. In the
parametric framework, chip data are normalized using a distribution model as the
standard, whereas in the other frameworks, a standard is sought among the data sets. For
example, the standard is determined for a pair of datain LOWESS ° and shift-log **, and
from the means of data quantilesin RMA. Consequently, the normalization of a data set
in existing frameworks is affected by all of the data sets being processed at the same
time. This dependency on other data sets can be expected to adversely affect the
uniformity of the analysis, which becomes apparent when comparing information
among different studies.

Another fundamental difference is associated with the testability of the fundamentals
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of the framework. LOWESS and RMA inevitably fulfill the assumptions regarding the
assumed nature of the data, that is, they take the form of stable logarithmic ratios
(LOWESS) or identica data distributions (RMA). MAS5 contains numerous
conditional judgments that are not based on factual knowledge. The premises of these
frameworks therefore precludes effective evaluation of the model assumptions. The
parametric framework, on the other hand, employs a strict model and normalization
cannot be completed without coincidence between the model and chip data. Any test of
validity therefore relates to the reliability of the obtained information.

The normalization process, which tests data distribution against a model (Fig. 1), is
useful for identifying the likely range of data. As with other measurement systems,
microarrays inevitably contain noise. With repeated measurements such as those shown
in Fig. 3, the noise level can be reduced by taking the means of repeats. However, the
noise contained in each measurement may still affect analyses, particularly when small
numbers of repeats are available. Even in such cases, the parametric framework allows
the data range that is likely to be affected by additive noise and saturation to be clearly
defined (Fig. 1). The usefulness of this method for data classification is clearly shown in
Fig. 2(a), and is expected to increase the reliability of analyses by reducing the
false-positive rate.

The proposed parametric framework thus achieves superior universality of data and
allows for the evaluation of data reliability, providing a means of integrating knowledge

obtained from many different laboratories and chip platforms.

METHODS

Test animals



Nature Precedings : hdl:10101/npre.2008.1746.1 : Posted 1 Apr 2008

Male Fischer 377 rats (SPF, 5 weeks of age) were administered with 300 mg/kg/day
of Safrol for up to 28 days at the Mitsubishi Chemica Safety Institute ** . RNA

samples were isolated from the liver of each test animal.

Microarrays
Identical RNA samples were investigated using GeneChip (Rat Genome 230 2.0
array; Affymetrix) and aNEDO-ToxArray |11 ink-jet printed chip (6709 genes *%). These

microarrays share an overlap of 4433 genes.

Normalization
Parametric normalization was performed using SuperNORM (Skylight Biotech,
Akita). Other normalizations were performed using R version 2.4 '® with the

implemented affy library *°

as follows. The scanner-estimated background was
subtracted from the Cy3 and Cy5 data of each ToxArray chip, and the logarithmic ratios
were stabilized by the LOWESS function ° in R. The normalized data were separated
into Cy3 and Cy5 channels *” for gene selection. The GeneChip data were normalized

and summarized using the MAS5 function or the RMA 8 function of affy *°.

Comparisons of selected genes

Genes that suggested larger effects in expressional changes relative to a predefined
threshold were selected. The effects were estimated using treatment (n = 4) and control
(n=4) rats, al of which were measured identically. The effect (E) was estimated for
each gene (g) between the logarithm forms of normalized data for treatment (T) and

control (C) using datafrom the ith chip asfollows.
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Here, ngt and nyc are the numbers of available data for the treatment and the control.
The threshold of the selection was determined using the mean of sample variances (sgz),

which was measured for each gene as follows:

oo 2 0o ~T)* 4 (Cy =Cy)’

Nt +Ngc— 2

The threshold level (L) was then determined using the expression

2
L =3><‘/Z“i ,
ngenes

where Ngenes IS the number of the gene. Genes that display |Eg| values larger than L were
selected. In the parametric framework, only data in the valid range were used. In cases
where ng 1 or ngc was less than 3, the gene was excluded. In MAS5, only “Present” data
were used. Assuming the effects of biological conditions and experimental error are
normally distributed, the expected false positive rate is 0.27% (12 cases) of the gene
comparisons. Standard statistical tests such as the Student’s t test or ANOVA were not
employed because both estimate the threshold in a gene-wise manner and the number of
total measurements was considered insufficient. Such tests may also be unfavorable for
toxicological applications due to oversensitivity when variances are small. If small
differences can be detected using a sufficiently large data set and a reference pattern of
transcriptome changes can be established, it may be possible to conduct experiments
on-site using a limited number of chips. However, comparison of on-site data with a
reference pattern will be difficult because the information obtained using a small

number of measurements may contain fluctuations attributable to noise, resulting in an
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elevated false-positive rate.
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Figure 1. Distribution of normalized data. Signals obtained for the same RNA sample

are shown in normal QQ plots. () Spots other than controls from NEDO ToxArray |11,

and (b) PM data from GeneChip. Red line denotes y = x. Arrows denote valid range of

data with respect to model fit.



Nature Precedings : hdl:10101/npre.2008.1746.1 : Posted 1 Apr 2008

parametric RMA - LOWESS MASS - LOWESS

=t =t =t
a b c
i o o o o
g
3
o O o o
v
w ey - -
= 9 b b
¥ i i
I I I I I I
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2
GeneChip GeneChip (RMA) GeneChip (MASS5)

Figure 2. Coincidence in log, ratio between chip platforms. Differences in transcripts
between Safrol-administrated sample and mock control are measured using GeneChip
and NEDO ToxArray 1ll. Data plotting on y=x line (green) are coincident between
platforms. Colored plots denote “out of detection” judgment by the respective
frameworks. (a) Parametric framework. Colored plots denote signals out of the valid
range of the parametric model (GeneChip, blue; ToxArray, orange). Residual root mean
square (RMYS) between platforms in valid range (average difference) is 0.210 (1.16 fold).
(b) LOWESS (ToxArray) vs. RMA (GeneChip). Residua RMS is 0.357 (1.28 fold).
(c) LOWESS (ToxArray) vs. MAS5 (GeneChip). Blue plots denote “Absent” MAS5

data. Residual RM S for “Present” datais 0.283 (1.21 fold).
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Figure 3. Summary of genes selected using an average level of estimated noise
(METHODS). (Upper) Coincidence between selected gene lists. Values denote number
of selected genes. Signas outside of the valid model range are omitted as shown.
Comparisons of logarithmic ratios are shown in the supplementary data. (Lower)
Functions of cross-selected genes from gene titles and biological processes of gene

ontology provided by the chip manufacturer.



