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Abstract

Proteins vary in their cost to the cell and natural selection may
favour the use of proteins that are cheaper to produce. We develop a
novel approach to estimate the amino acid biosynthetic cost based on
genome-scale metabolic models, and directly investigate the effects of
biosynthetic cost on transcriptomic, proteomic and metabolomic data
in Saccharomyces cerevisiae. We find that our systems approach to
formulating biosynthetic cost produces a novel measure that explains
similar levels of variation in gene expression compared with previously
reported cost measures. Regardless of the measure used, the cost of
amino acid synthesis is weakly associated with transcript and protein
levels, independent of codon usage bias. In contrast, energetic costs
explain a large proportion of variation in levels of free amino acids. In
the economy of the yeast cell, there appears to be no single currency to
compute the cost of amino acid synthesis, and thus a systems approach
is necessary to uncover the full effects of amino acid biosynthetic cost in
complex biological systems that vary with cellular and environmental
conditions.



Background

Everything in a living cell has a cost: from the energy needed to transform
molecules against thermodynamic equilibria, to the raw materials needed to
produce the constituents of a new cell. Natural selection may be expected
to minimise such cellular costs, and evidence for adaptation to require less
energy and matter may exist at the molecular or cellular level. Testing
this hypothesis requires answering several questions about the meaning of
cost in the cell, and how to measure it. For example, how does one assign
a biochemical price to a molecule whose state is dependent on changing
environmental and cellular conditions? Similarly, is it possible to separate
different costs from one another, or from other molecular constraints in
the cell? Moreover, are biosynthetic costs the same at different levels of
the gene expression hierarchy? Knowing the answers to these questions is
central to a systematic understanding of the chemical forces that shape the
composition of biomolecules, and how biomolecular composition relates to
gene expression at the transcriptional and post-transcriptional levels.

Craig and Weber [14] pioneered the quantitative analysis of cost at the
cellular level to investigate the effects on the synthesis and evolution of a
small number of Escherichia coli proteins. Their approach to estimate the
cost of a protein is the sum of how many units of high energy phosphate
bonds (e.g. ATP) and reducing hydrogen atoms (e.g. NADPH) are diverted
from the available energy pool to produce each of the constituent amino
acids from glucose, averaged over the length of the protein. Akashi and
Gojobori [3] used a modified version of this approach to show in the chemo-
heterotrophic bacteria E. coli and Bacillus subtilis, that predicted gene ex-
pression levels based on codon usage bias show a negative correlation with
average protein cost. This work provided the first genome-wide evidence
that evolution has optimised prokaryotic cells to produce highly expressed
proteins with less expensive amino acids, and established an important link
between the metabolism of a cell and the evolution of its genome sequence.
Heizer et al. [20] extended these findings to four additional prokaryotic
species including photoautotrophs, demonstrating that this cost optimisa-
tion occurs whether the source of energy is organic or inorganic. More
recently, Swire [33] used Craig and Weber’s [14] cost values to generate a
new cost measure for an amino acid based on its usage in proteins as a
function of overall protein cost computed from all other amino acids, and
showed that cost selection affects multiple prokaryotic, archaeal and eukary-
otic genomes. Wagner [35] developed a method similar to Craig and Weber
[14] that includes the energetic costs of synthesising both mRNA and pro-
tein for Saccharomyces cerevisiae, and showed that the cost of doubling gene
expression after a gene duplication is likely to be significant enough to come
under under selection pressure.

Seligmann [31] argued that, while the number of high energy molecules



is an important part of the energetic investment of synthesising an amino
acid, this approach is unlikely to explain the entire investment made by
a cell when producing an amino acid. Instead, Seligmann [31] used the
molecular weight of an amino acid as a proxy for energetic costs, reasoning
that this may take into account all the manifold effects of the complexity
of producing larger amino acids. Molecular weight also has the advantage
of being constant across species, and therefore can be used to test the cost
selection hypothesis where the genome sequence is available but the topology
of amino acid synthetic pathways is unknown. Seligmann used this to prove
that on an individual protein basis, molecular weight is indeed minimised
across a range of bacterial and eukaryotic genomes. Estimating the cost
of an amino acid based on its molecular weight also raises the issue of the
potential costs of the atomic content in biomolecules. Baudouin-Cornu et al.
[4] showed that enzymes in pathways scavenging sulphur, carbon, or nitrogen
from the environment are under-represented in terms of their composition
for that particular nutrient. Further research by Bragg et al. [7] showed
across 141 genomes that the sulphur content of the encoded protein varies
widely and is associated with environmental conditions of the species. Both
of these results indicate that atomic composition may also play an important
role in the cost of producing a protein.

Even if all the energy required for protein synthesis can be accurately
predicted, this may not represent the true cost under all cellular or envi-
ronmental conditions. Just as in supply and demand economics[32], when a
particular atom is scarce in the cell or environment, synthesis of molecules
abundant in this atom will be more expensive, in comparison to molecules
where that atom is under-represented [12]. Therefore, estimates of the cost
of synthesising an amino acid should be performed in a systems biology
framework where the cost of producing a molecule can be calculated for in
the wider cellular context under a variety of environmental conditions. Here
we show how two systems biology approaches, sensitivity analysis [18, 34]
and flux balance analysis (FBA)[30], can be combined to provide a novel
means to estimate the cost of amino acid synthesis in the microbial eukary-
ote, S. cerevisiae. In this report, we produce two new measures of amino
acid cost: the first estimates the “relative” cost of synthesising the amino
acid by perturbing the required quantity for growth, the second is derived
by multiplying the first cost by the biomass requirement to obtain a per
molecule “absolute” cost. We calculated each of these two cost types for
four nutrient limiting conditions (glucose, nitrogen, sulphur, and phospho-
rus) to investigate how cost varies according to environmental conditions.
As in previous studies[14, 31, 20, 33, 35], we focus on amino acid synthesis,
because this allows us to analyse the effects of cost on gene expression.

Using our novel systems approach, we analysed the joint effects of en-
ergetic and atomic costs on the transcriptome, proteome and metabolome
of S. cerevisiae. We show that biosynthetic cost and atomic composition



do indeed have a measurable relationship with gene expression, but that
the effects of cost are dependent on the level at which the gene expression
hierarchy is considered. Importantly, we analyse transcriptomic and pro-
teomic data directly, whereas previous work has used codon usage bias as
a proxy for gene expression [3, 15, 20], examined atomic composition for
only a small set of expressed genes [8], or attempted to predict gene ex-
pression based on amino acid composition without respect to biosynthetic
cost [28]. We show that our systems biology approach explains a significant
proportion of variation in gene expression levels, independent of codon us-
age bias, tRNA gene number or atomic content. Our relative measure of
cost is poorly correlated with previously reported measures of cost, but also
explains a comparable amount of gene expression, suggesting that no single
measure currently captures all aspects of biosynthetic cost. We also extend
cost analysis to levels of free amino acid levels in the metabolome, an aspect
of cellular economics that has not been considered in previous research, but
which provides intimate links to protein synthesis.

Results

A systems biology approach to estimating the cost of amino
acid synthesis

To estimate the cost of synthesising an amino acid in S. cerevisiae, we used
the genome-scale metabolic model created by Duarte et al. [17]. For each
amino acid, the required quantity for growth was altered and the effect on
one of four nutrient uptake fluxes was measured. These uptake fluxes were
glucose, ammonium, sulphate and phosphate. The biomass production rate
for the model was fixed at a constant value, so that cost estimates were scaled
to the same growth rate in each nutrient limiting condition. For each amino
acid, a percentage increase and decrease in requirement for production of
biomass was applied. This allowed the cost of an amino acid relative to
biomass requirement (“relative cost”) to be measured as the slope between
the percentage change in amino acid requirement and the predicted uptake
flux. A per-molecule “absolute cost” was then calculated for each amino
acid by dividing relative cost by the biomass requirement (see Methods for
details). Figure 1 shows previous costs measures reported in the literature,
and Figure 2 shows our novel systems biology cost estimates. Figure 3 shows
an agglomerative hierarchical clustering of all cost measures listed in Table
1, based on the Spearman’s Rank correlation (Additional File 2).

As expected if the limiting factor is the availability of atoms to create
the molecule rather than energetic limitation, we find that the absolute cost
of an amino acid under S and N limitation is directly proportional to the
number of atoms of that nutrient in the molecule. The absolute costs of
all amino acids under P limitation are zero, in accordance with the fact



that amino acids do not contain phosphate atoms. Absolute cost estimates
under glucose limitation have Spearman correlation coefficients greater than
0.8 with Akashi and Gojobori’s [3] energetic cost, Craig and Weber’s [14]
energetic cost, Wagner’s [35] respiratory energetic cost, and molecular weight
(Additional File 2; Figure 3). Wagner’s [35] fermentative energy cost and
Craig and Weber’s [14] biosynthetic complexity show lower coefficients of
0.522 and 0.65, respectively, but are still significantly correlated. Figures
4A and 4B illustrate the relationship of the absolute cost under glucose
limitation with two example data sets, Akashi & Gojobori energetic cost
and molecular weight. These results show our absolute cost measure under
glucose limitation is in good agreement with the previous manually-curated
measures described in the literature, and indicate that the cost of an amino
acid is most likely a function of energetic limitation in yeast.

Our relative costs are can be viewed as the absolute cost of synthesising
the amino acid, scaled by its use in the proteome. For example, cysteine and
methionine have the same absolute cost under sulphur limiting conditions,
but in relative terms the cost of methionine is much greater because it is
used more in the proteome. A similar pattern is also observed for histidine
and lysine, whose rank order absolute costs switch when scaled by proteome
use. As expected, phosphate limitation does not shown any effect on the
relative cost of amino acid synthesis. Compared with previously reported
cost measures, relative cost under glucose limitation shows no significant
correlation with any previously described cost measure (all p > 0.05), as
illustrated in Figures 4C and 4D. The highest Spearman coefficient between
relative cost under glucose limitation and any other literature dataset is
0.077 (p = 0.49), when compared with Wagner’s fermentative energetic cost,
indicating that our relative cost [35] measure under glucose limitation has
little in common previous descriptions of amino acid cost.

We used similar measures to calculate amino acid cost using the iJR904
model of the E. coli metabolic network [29] to estimate the generality of
our results among species and FBA model. Absolute costs of synthesis are
highly correlated between species under glucose limitation (Spearman R =
0.94, p = 0), as are relative costs under glucose limitation (Spearman R =
0.74, p <0.001). The high correlation of absolute cost is expected given the
conservation of metabolism [10], whereas the relatively lower correlation of
relative costs may arise from differences in amino acid composition of the
proteome across species. The estimated costs for E. coli are also included in
Figure 4 for illustrative purposes, and demonstrate the general applicability
of our method to any species with a genome-scale metabolic model.



The cost of amino acid synthesis influences the yeast tran-
scriptome, proteome and metabolome

Transcriptome

We investigated the capacity of absolute and relative cost under glucose
limited growth, as well as each previously reported cost measure, to ex-
plain then transcript expression levels in each of the four nutrient limiting
environments from the S. cerevisiae dataset of Castrillo et al. [13] using
multivariate regression. The expression of each transcript was modelled as
a function of the codon adaptation index (CAI) of the coding sequence, av-
erage tRNA gene number, the mean energetic cost per residue of the protein,
and the mean atomic composition per residue of the protein. We included
CAI and tRNA gene number in the model since these factors are known to
correlate with gene expression levels [22, 2], and allows us to demonstrate
an independent effect of cost that controls for these factors. Each of the
selected cost types, was cycled as the cost variable in the regression equa-
tion. Only the relative cost under glucose limitation was used, as this is the
environment most relevant to yeast [16, 9, 13] and the other costs under P,
N and S limitation are proportional to atomic composition, which is already
included in the model. Table 2 shows the explanatory power for the full
regression model for each cost type in predicting transcript levels. All cost
models explain ~40% of the variation in transcript levels across genes, with
the difference in variation explained by the best and worst model being only
4.5%.

Using Akaike’s Information Criterion (AIC) [1] the importance of the
variables in the regression equation was measured by removing each in turn,
then comparing the goodness of fit with the model containing all terms. Fig-
ure 5A compares the importance of each variable with other variables in the
same model for each cost type. Compared to characteristics of the encoded
protein, the CAI of the transcript is at least half an order of magnitude more
important than the nearest explanatory variable, regardless of which cost
type is included. This result supports the well-established fact that codon
bias correlates with gene expression in growing yeast cells [22, 23, 11]. The
dominant influence of CAI over other factors also explains why the different
cost types do not yield substantially different predictive power in the model.
In the molecular weight model which has the greatest explanatory power
(42.2%), the most important individual variable for predicting transcript
level after CAI is cost, and carbon content is the third most important. A
general trend across all models is that the most important variable after CAI
is either cost, carbon content or nitrogen content. The importance of tRNA
gene number on transcript levels appears relatively fixed regardless of which
cost is used. Finally average sulphur content appears the least predictive
measure.



Proteome

The importance of cost in explaining protein levels was also modelled us-
ing multivariate regression followed by variable removal. To analyse the
effect of cost on gene expression at the protein level, we used data from
Ghaemmaghami et al. [19], measuring antibody tap-tagged protein expres-
sion, since protein expression levels from Castrillo et al. [13] were measured
relative to a background (see Methods for details). Table 2 illustrates the
explanatory power of each cost model to predict protein expression levels.
As with the transcript data, each model explains approximately ~ 40% of
gene expression, and the difference in explained variation between the best
and worst model is very small (~0.8%), relative to the overall variance ex-
plained.

Figure 5B shows the relative importance of each factor in the multivariate
regression model for protein levels. This analysis illustrates similar trends
to that of the transcript data where CAI is, by an order of magnitude, the
most important factor in the model. This is not unexpected given that in
the original paper, Ghaemmaghami et al. [19] showed Spearman R = 0.57
for the relationship between CAI and protein expression. The best fit model
uses absolute cost under glucose limited conditions, in which biosynthetic
cost, carbon content and nitrogen content all have a similar importance in
explaining variation. Sulphur content is again the least important variable.
This is a similar trend to the transcript data where generally (i.e. across
all models) biosynthetic cost, carbon content and nitrogen content all play
a similar importance in explaining variation in gene expression levels, and
sulphur content is the least important. However the importance of tRNA
gene number, and sulphur content are more variable than in the transcript
data, and in some instances their removal improves model parsimony, as
indicated by a negative AIC.

Metabolome

The availability of comprehensive metabolomic data for S. cerevisiae from
Castrillo et al. [13], allows us to determine if atomic and energetic costs
are important in the synthesis of amino acids. Using similar multivariate
regression and variable removal, we investigated the importance of each
variable in explaining free amino acid levels. We used the same factors as
the previous two analyses, with the exception of CAI (which is not applicable
to amino acids). The main difference between analysis of the metabolomic
data and either the transcriptomic or proteomic data are fewer number of
data points for free amino acids versus those for transcripts and proteins.
Table 2 shows how much of the variance in free amino acid level is explained
by each of the multivariate models. In contrast to transcript or protein
levels, cost type shows the greatest range in explaining variation in free



amino acid levels, with R? coefficients ranging from 76.7% for molecular
weight, to 87.5% for relative cost under glucose limitation. The explanatory
power of these cost models at the metabolomic level are remarkable given
that CAI was not included, and are due only to the effects of energetic costs,
atomic costs and genomic tRNA gene number.

Figure 5C shows the importance of each cost type in explaining free
amino acid levels. The general trend across these models in that all variables
appear important, though there is more variability for carbon and sulphur
content. In particular under glucose limitation, carbon and sulphur content
are less important and therefore the explanation of free amino acid levels
can be attributed to nitrogen content, tRNA gene number, and the relative
cost of synthesis.

Discussion

The principal achievements of this work are twofold. First, we developed a
novel method to estimate the cost of amino acid synthesis using a systems
biology approach that incorporates sensitivity analysis and flux balance anal-
ysis of genome-scale metabolic models. We compared our novel estimates of
amino acid costs to six measures reported in the literature and showed that
absolute cost under glucose limitation is highly correlated with previous cost
measures, while relative cost under glucose limitation is not. Furthermore
we showed that our systems biology approach can be applied to calculate
environment-specific biosynthetic costs, which highlighted the effects of lim-
iting elements of amino acid cost. Second, we investigated the utility of
energetic cost measures in conjunction with atomic costs and other factors
to analyse transcript, proteomic, and metabolomic data from S. cerevisiae.
Our analysis shows that amino acid costs do show a relationship with gene
expression, but explain only a minor component of transcript and protein
levels relative to factors related to translational optimisation such as CAL
In contrast, we find that energetic and atomic costs do explain a substantial
degree of the variation in levels of free amino acids in the metabolome.

No single currency for amino acid biosynthetic cost

Our systematic review and comparison of energetic cost types previously
described in the literature (Table 1) shows that they are highly correlated
with one another. Among previously reported measures, molecular weight is
the least related (Figure 3), which is expected since the other energetic cost
measures are based on manual curation of metabolic networks. This finding
supports the view of Seligmann [31] that the molecular weight of an amino
acid includes investments by the cell that can not easily be estimated from
the metabolic network alone. Nevertheless, molecular weight and biosyn-
thetic cost based on curated metabolic networks are highly correlated (see



also [31]). Of the two costs estimated from a glucose limited state, which
is probably most relevant to yeast biology, our absolute cost measure cor-
relates with those previously described in the literature (Figure 3 and 4),
confirming previous cost measures and validating our general approach to
estimating biosynthetic cost. Our absolute cost measure, like all previously
reported cost measures (with the exception of Wagner’s fermentative mea-
sure [35]), points to tryptophan as being the most expensive amino acid for
the cell to produce (Figure 1, Table 1). Tryptophan is considered expensive
because of its complex double ring structure and the number of high energy
molecules required for its synthesis and is (along with methionine) unique
in that it is encoded by only one codon in the genetic code.

In contrast to our absolute cost in glucose limitation, the corresponding
relative cost shows little relationship with any previously described cost
metric under the same conditions (Figures 3 and 4), and provides a novel
perspective on how to measure the cost of amino acid biosynthesis. Under
glucose limitation, relative cost shows leucine and lysine to be the most
expensive amino acids and tryptophan is estimated as one of the cheapest,
in contrast to other previously reported cost measures (see above). Our
relative cost measure reflects the absolute cost of synthesising the amino
acid, scaled to its use in the proteome. Therefore although a tryptophan
molecule may be expensive to produce individually, its low usage in the
proteome makes it cheaper to maintain overall at the cellular level.

To test whether absolute or relative cost may have shaped the long-term
evolution of yeast genes, we compared the cost of each amino acid estimated
under glucose limitation with their proportional usage in the genome (Figure
7). It is important to note that our relative costs are estimated using amino
acid biomass composition in the cell, not amino acid usage in the genome,
and therefore these two datasets are independent. We find a high correlation
between relative cost and amino acid usage in the genome (Spearman R
= 0.65, p = 0.0021), but not for absolute cost (Spearman R = -0.37, p
=0.1053). This result supports the observation that certain amino acids in
S. cerevisiae are more likely to appear in highly expressed proteins noted by
Jansen & Gerstein [24], who suggested that this could be related to their cost
of synthesis. An interesting exception to the relationship between glucose
limited relative cost and usage in the genome is that serine does not follow
the proportional use versus cost trend. Serine was previously identified as
an outlier in an analysis of the relationship between cost and rates of amino
acid substitution [21]. We speculate that there are biological reasons why
serine may be less costly than expected relative to other amino acids based
on it usage in yeast genes. Serine is involved in nucleic acid synthesis, as
well as that of glycine and cysteine, therefore additional demand for serine
may be buffered by the many pathways to which it is linked, and this was
identified by our approach to estimating cost using sensitivity analysis of
genome scale metabolic models.
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While it is clear that no single measure may fully capture all aspects of
the cost of amino acid synthesis, we believe our systems biology method for
computing amino acid cost has a number of advantages over previous meth-
ods. The first is that, given a genome-scale FBA model, computationally
generated cost measures require no manual curation and allow cost calcula-
tions that are more explicitly replicable. Moreover, use of a computational
model allows costs to be calculated under a variety of nutrient conditions,
permitting a more flexible approach to exploring costs under different cel-
lular and environmental conditions. Additionally, we believe our approach
takes into account the whole cellular state, including all simulated reac-
tions and metabolites, not just those between substrate and product. The
main drawback is that a species-specific FBA model must be available to
perform the analysis, though our results shows that absolute cost of synthe-
sis is conserved across species, while relative requirements may vary. Future
work could address how costs vary between organisms that have evolved and
adapted their proteome to markedly different environmental conditions.

Translational optimisation over cost minimisation

At the transcript and protein levels, our models explain approximately 40%
of the the variation in expression (Table 2). Overall, codon usage bias is the
most important factor for explaining variance in gene expression levels, and
the other factors only show a limited impact on model fit. Therefore, of the
variance in gene expression explained by our models, the majority is due to
optimisation of the coding sequence for translation rather than cost minimi-
sation. Nevertheless, we can demonstrate an independent, albeit small effect
of amino acid cost on transcript and protein levels (Table 2, Figure 5). The
correlation between cost and gene expression are complex and depend on
the cost measure used (Figure 5). The small effect of the cost type used in
the model may also be expected, as we have shown that they are all highly
correlated, and therefore little variance occurs between each measure. The
exception to this is the relative cost measure under glucose limited condi-
tions which shows no correlation with previous measures, yet still explains a
significant degree of variation in gene expression levels. This indicates that
the physiological maintenance of amino acids in the the proteome, and not
just their absolute cost, is an important factor in considering the cost of
gene expression.

For the analysis of the metabolomic data, the variation in the R? values
between models is much greater than observed at the transcript or protein
levels. Ome possible explanation for this is the reduced number of data
points (N = 184 [13]), compared with the large transcript (N = 36264 [13])
and protein (N = 2204 [19]) data sets used in the previous analyses. In con-
trast to transcript and protein levels, the model that explained the greatest
variation in free amino acid levels was based on our relative cost measure,
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demonstrating the value of this model for interpreting energetic investment
at the metabolomic level. This is of further interest as the relative cost re-
lates absolute cost of synthesis to its usage in the proteome, therefore indi-
cating that free amino acids are maintained at levels in the cell proportional
to that encoded in the genome, a finding which has not been demonstrated
previously.

Conclusions

We have conducted a systematic investigation of the hypothesis that the cost
of synthesising amino acids has shaped the evolution of protein primary
structure and gene expression in yeast. Qur analysis indicates that cost
plays a role, but not as large as might be expected given that a predicted
80% [35] of the cellular ATP budget is devoted to protein synthesis. Instead
our research shows that CAI, and therefore translational efficiency is the
dominant factor in the evolution of gene expression. We believe this indicates
that the optimisation of translation outweighs any benefits that would be
gained from the use of cheaper amino acids. This is further illustrated by
our analysis of the metabolomic data where the cost measure that shows
the greatest explanatory power, is highly correlated with the usage of amino
acids in the proteome.

Materials and Methods

A systems biology approach to estimating the cost of amino
acid synthesis

Flux balance analysis was performed using the COBRA toolbox [5], run-
ning in the MATLAB environment. The genome scale models used were
iND750 for S. cerevisiae [17] and iJR904 for E. coli [29]. In each model,
the stoichiometry of the biomass reaction determines the required ratio of
biomolecules used to produce a new unit of biomass. However, costs be-
tween models can be compared by fixing biomass flux to a constant value.
The units used in the model are mmol of reactant, per gram of biomass, per
hour. Simulation of the model, using the Ipsolve library [25], is the solution
of a linear programming problem to maximise or minimise the flux through
a particular reaction given the topology, and upper and lower bounds on the
reactions in the metabolic network of the organism.

For each of the twenty amino acids, which are all included in the biomass
reaction, we altered in turn the requirement of each for the production of
biomass. This ranged from a 0.0002% increase in requirement, to a -0.0002%
decrease, at 0.0001% intervals. For each alteration biomass production flux
was fixed at 0.05, and the model solved to maximise one of the four input
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fluxes glucose, ammonium, sulphate, and phosphate. Maximising uptake
flux is the equivalent of finding the solution with the minimal flux molecule
into the cell. The other uptake fluxes were set -1000, effectively unlimited.
The aim of this was to simulate the expense of the amino acid under a given
nutrient limitation, but also scaling each cost to the same growth rate. The
relative cost for a given amino acid, under a given nutrient limitation, was
then estimated as the slope between amino acid requirement and the cor-
responding nutrient uptake flux. As the relative cost is estimated from a
percentage change in amino requirement, this can be scaled to an absolute
per molecule cost by multiplication of x(/100, where x( is the biomass re-
quirement of that amino acid. The proofs for this relationship are shown
below. The code used in this analysis is available in the supplementary
materials.

Absolute Cost = le—G
Tz =2z
= G'(wo)
Relative Cost = iG (1‘ (1+x)>
~ dz 0 100/ /1|, —o
_ A0y
= g9 @ (@0)

Determination of transcript, protein, and amino acid charac-
teristics

The Codon Adaptation Index (CAI) for each S. cerevisiae gene was taken
from Wall et al. 2005 [36], tRNA gene number was taken from Akashi [2].
Previously reported amino acid energetic costs were obtained from Craig &
Weber [14], Akashi & Gojobori [3], Wagner [35], and Seligmann [31]. For
each gene, the average tRNA gene number, energetic cost, or atomic cost
was computed as the sum of the count or cost over the encoded protein,
divided by the length, excluding stop codons. Prior to analysis, each these
variables was transformed by the natural logarithm, then scaled to have
the the same mean and variance. This was to reduce any over-variation
and heteroscedasticity biasing model estimation. Scaling was performed by
subtracting the mean, then dividing by the root mean square for each data
set. For the metabolomic data set, a small constant (0.0001) was added to
sulphur content so that this variable could be logged.

13



Determining explanatory power of factors in transcript, pro-
tein, and metabolite data

Multiple regression was used to measure the importance of atomic and ener-
getic cost on transcript and protein expression using the R statistical com-
puting language [27]. For each data set, a multiple regression model was
fitted. The measured quantities of the transcript, protein, or metabolite was
treated as the response variable, and atomic cost, energetic cost, and the
codon adaptation index (if applicable) where used as explanatory variables.
Atomic cost consisted of three independent variables: carbon, nitrogen and
sulphur content. Experimental conditions that differed among replicates in
the datasets were treated as fixed effects in the model, and included as in-
teraction terms. Initially, all possible interaction terms were considered and
automated step-wise regression used to remove superfluous interaction terms
based on a penalised log. likelihood score, Akaike’s Information Criterion
(AIC) [1].

To estimate the importance of each of the equation parameters, the data
set was modelled without the variable in question, and then compared to
the model containing all terms, again using AIC. For example, to estimate
the importance of nitrogen in the Castrillo et al. 2007 Castrillo2007 data
set, the data were first modelled using all factors - environment, dilution
rate, CAI, tRNA gene count, energetic cost, nitrogen, carbon and sulphur
content. The importance of nitrogen was then determined by repeating
the data modelling with the same variables, except nitrogen content. The
contribution of nitrogen content to explaining the variation in models was
then estimated from the difference in the model without nitrogen with the
model containing all terms. This process was performed for all factors in
the equation, and then repeated for all energetic cost estimates as the cost
variable in the equation.

Experimental data

Experimental transcriptomic, proteomic and metabolomic data used in this
analysis are from Castrillo et al. 2007 [13], and an additional proteomic
dataset is from Ghaemmaghami et al. 2003 [19]. Briefly, the Castrillo et al.
2007 [13] experiments continuously cultured S. cerevisiae using a chemostat
under four nutrient limiting conditions and three (two for protein data) di-
lution rates, for a total of twelve (eight for protein) different experimental
conditions. The transcript data produced from replicate microarray analysis
of total RNA, which were processed by robust multi-array (RMA) quantile
normalisation [6]. Proteomic data was produced using Isotope Tags for
Relative and Absolute Quantification (iTRAQ) LC-MS/MS and standard-
ised relative to a standard pool sample and normalised by median absolute
deviation. Metabolomic data was obtained by GC/TOF-MS, and also nor-
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malised using median absolute deviation, missing values were inferred from
replicates in the same conditions.

As the protein data from Castrillo et al. [13] measured up/down regula-
tion of a protein against a background, which is not suitable as a measure
of absolute protein expression levels, we instead used data from Ghaem-
maghami et al. 2003 [19] for our analyses of cost on protein expression.
This reasoning was borne out by the small explanatory power (R? < 3%)
for any cost measure model using the protein data from Castrillo et al. [13].
Protein expression data from Ghaemmaghami et al. 2003 [19] is based on
tandem affinity purification (TAP) of TAP-tagged S. cerevisiae ORFs. Ex-
pression levels for each protein were determined using antibody-tag based
quantification. These data were converted to absolute protein molecules per
cell using a purified E. coli INFA-TAP construct standardised against the
range of yeast TAP tag protein observations.

For the model analysis, metabolite levels were mean averaged in each ex-
perimental condition to prevent pseudo-replication of observations. Protein
and metabolite levels were logged then scaled. Transcript levels were scaled,
but not logged as they were logged already in the original processing. The
reasons for this are the same as above, as is the scaling method.
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Figures

Figure 1 - Ranked amino acid costs across literature data sets.

Each data set was centred on its median, and the variance scaled using
median absolute deviation. Amino acid order is based on the median of the
median-normalised cost of the amino acid across data sets.

Figure 2 - Relative and absolute derived amino acid costs on
three nutrient uptake fluxes in S. cerevisiae

Estimated effect on exchange fluxes for each of amino acid. The amino acids
are ordered by median normalised rank as in Figure 1. Phosphate limitation
was not included, as costs calculated under this limitation were effectively
0.

Figure 3 - Hierarchical clustering of amino acid biosynthetic
cost estimates.

The clustering method was complete agglomerative, using Spearman’s Rank
correlation distance (Additional File 2) between data sets.

Figure 4 - Comparison of the genome scale model derived cost
data sets.

Comparison of estimated amino acid cost with number of ATP and NADPH
molecules used in synthesis (left), and molecular weight (right). On the y
axis are the amino acid costs estimated using flux balance analysis. Both S.
cerevisiae and F. coli measures are included to illustrate variance between
species. Estimated cost values have been been rescaled around their mean
value to allow comparisons across species. The trends in each plot are drawn
using ‘loess’ smoothing.

Figure 5 - Comparison of models and variable explanatory
effects for transcript, protein and metabolite data.

Carbon, nitrogen, sulphur and cost are characteristics of the encoded pro-
tein, while CAI is a characteristic of the transcript. A multiple regression
model was fitted to explain transcript, protein and metabolite levels. Each
variable was then removed from the model and effect on model explanatory
power was measured using Akaike’s Information Criterion. Eight different
cost effects were used as the cost explanatory variable.
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Figure 6 - Comparison of amino acid estimated absolute and
relative cost, and the percentage use in the yeast genome.

‘Loess’ smoothing is used to indicate trend.

Tables

Table 1 - Predicted amino acid cost estimates

Datasets taken from the literature are indicated with reference. The Akashi
& Gojobori, Craig & Weber energy, and the two Wagner data sets are based
on the curation of the number of high-energy molecules used during synthe-
sis, where a defined ratio is used to convert them into a single measures:
usually ATP. The Craig & Weber ’steps’ measure [14] is based on the num-
ber of the number of biosynthetic steps between central metabolism and the
produced amino acid. Molecular weight is in Daltons. Our cost measures
are the first order derivatives of the relationship between the amino acid
requirement for growth and nutrient uptake flux.

Table 2 - Adjusted R? coefficients for multiple regression mod-
els

The R? describes the data for the model with tRNA gene count, and all
atomic, and energetic factors. CAI is also included in the model for tran-
script and protein data. Each row represents the specific cost factor used in
that model.

Additional Files

Additional file 1 — Amino acid costs

The amino acid cost data sets used in the analysis.

Additional file 2 — Amino acid cost correlations

Spearman’s rank correlations between cost data sets.

Additional file 3 — Tablulated transcript data set

The transcript data from Castrillo et al. 2007 tabulated with cost, atomic
composition, tRNA gene number and CAI.

Additional file 4 — Tabulated protein data set

The protein data from Ghaemmaghami et al. 2003 tabulated with cost,
atomic composition, tRNA gene number and CAI
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Additional file 5 — Tabulated metabolite data set

The metabolite data from Castrillo et al. 2007 tabulated with cost, atomic
composition, and tRNA gene number.
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Castrillo et al 2007 Castrillo et al 2007 Castrillo et al 2007
Cost type Transcripts Proteins Metabolites

S. cerevisiae Absolute

S. cerevisiae Relative

Akashi & Gojobori (2002)
Craig & Weber (1998) Energy
Craig & Weber (1998) Steps
Wagner (2005) Respiratory
Wagner (2005) Fermentative
Molecular Weight

0.388749709
0.383017877

0.3977329
0.416365042
0.374764611
0.381891849
0.377009278
0.422381883
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0.403776254
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0.781732446
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0.850457048
0.766590579




	Article File #1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2

