Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Precedings
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • RSS feed
  1. nature
  2. nature precedings
  3. articles
  4. article
Safe Functional Inference for Uncharacterized Viral Proteins
Download PDF
Download PDF
  • Manuscript
  • Open access
  • Published: 14 August 2008

AFP-Biosapiens 2008

Safe Functional Inference for Uncharacterized Viral Proteins

  • Yaniv Loewenstein1 &
  • Michal Linial1 

Nature Precedings (2008)Cite this article

  • 211 Accesses

  • Metrics details

Abstract

The explosive growth in the number of sequenced genomes has created a flood of protein sequences with unknown structure and function. A routine protocol for functional inference on an input query sequence is based on a database search for homologues. Searching a query against a non-redundant database using BLAST (or more advanced methods, e.g. PSI-BLAST) suffers from several drawbacks: (i) a local alignment often dominates the results; (ii) the reported statistical score (i.e. E-value) is often misleading; (iii) incorrect annotations may be falsely propagated. Several systematic methods are commonly used to assign sequences with functions on a genomic scale. In Pfam (1) and resources alike, statistical profiles (HMMs) are built from semi-manual multiple alignments of seed homologous sequences. The profiles are then used to scan genomic sequences for additional family members. The drawbacks of this scheme are: (i) only families with a predetermined seed are considered; (ii) the query must have a detectable sequence similarity to seed sequences; (iii) attention to internal relationships among the family members or the relations to other families is lacking; (iv) family membership is often set by pre-determined thresholds.An alternative to profile or model based methods for functional inference relies on a hierarchical clustering of the protein space, as implemented in the ProtoNet approach (2). The fundamental principle is the creation of a tree that captures evolutionary relatedness among protein families. The tree construction is fully automatic, and is based only on reported BLAST similarities among clustered sequences. The tree provides protein groupings in continuous evolutionary granularities, from closely related to distant superfamilies. Clusters in the ProtoNet tree show high correspondence with homologous sequence (i.e. Pfam and InterPro), functional (i.e. E.C. classification) and structural (i.e., SCOP) families (3). A new clustering scheme (4) has provided an extensive update to the ProtoNet process, which is now based on direct clustering of all detectable sequence similarities. Herein, we use the ProtoNet resource to develop a methodology for a consistent and safe functional inference for remote families. We illustrate the success of our approach towards clusters of poorly characterized viral proteins. Viral sequences are characterized by a rapid evolutionary rate which drives viral families to be even more remote (sequence-similarity-wise). Thus, functional inference for viral families is apparently an unsolved task. Despite this inherent difficulty, the new ProtoNet tree scaffold reliably captures weak evolutionary connections for viral families, which were previously overlooked. We take advantage of this, and propose new functional assignments for viral protein families.

Similar content being viewed by others

Master Blaster: an approach to sensitive identification of remotely related proteins

Article Open access 22 April 2021

Using deep learning to annotate the protein universe

Article 21 February 2022

Protein remote homology detection and structural alignment using deep learning

Article Open access 07 September 2023

Article PDF

Author information

Authors and Affiliations

  1. The Hebrew University of Jerusalem https://www.nature.com/nature

    Yaniv Loewenstein & Michal Linial

Authors
  1. Yaniv Loewenstein
    View author publications

    Search author on:PubMed Google Scholar

  2. Michal Linial
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Michal Linial.

Rights and permissions

Creative Commons Attribution 3.0 License.

Reprints and permissions

About this article

Cite this article

Loewenstein, Y., Linial, M. Safe Functional Inference for Uncharacterized Viral Proteins. Nat Prec (2008). https://doi.org/10.1038/npre.2008.2187.1

Download citation

  • Received: 14 August 2008

  • Accepted: 14 August 2008

  • Published: 14 August 2008

  • DOI: https://doi.org/10.1038/npre.2008.2187.1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • protein families
  • function prediction
  • virus,
  • clustering,
  • ProtoNet
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Precedings (Nat Preced)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing