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Proof of principle for shotgun DNA
mapping by unzipping.
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Abstract

Abilitytomap polymerases and nucleosomes on chromatin is important for understanding the
impact of chromatin remodeling on key cellularprocesses. Currentmethods (such as ChIP and
ChIP-chip) have produced a wealth of information that demonstrates this importance, but key
information is elusive in these ensemble methods. We're pursuing a new single-molecule
chromatin mapping method based on unzipping native chromatin molecules with optical
tweezers. The firststep we are taking towards this abilityis shotgun DNA mapping (SDM).
This is the ability to identify the genomic location of a random DNA fragment based on its
naked DNA unzipping forces compared with simulated unzipping forces of a published genome.
We show that [~32] separate experimental unzipping curves for pBR322 were correctly
matched to theirsimulated unzipping curves hidden ina background of the [~2700] sequences
neighboring XhoI sites in the S. cerevisiae (yeast) genome. We describe this method and

characterize itsrobustness as wellas discuss future applications.

Abbreviations

SDM = Shotgun DNA Mapping; SM = single-molecule; ChIP = Chromatin Immunoprecipitation;

Pol IT= RNA Polymerase II;SCM = shotgun chromatinmapping

Introduction (Still need many references, such as)

Chromatin remodeling affects the ability of other proteins to access the DNA and has a
profound impact on fundamental processes such as DNA repairand gene transcription by RNA
polymerase. Understanding of these dynamic remodeling processes requires the ability to
characterize with high spatial and temporal resolution the changes to chromatin inside living
cells. Techniques such as chromatin Immunoprecipitation (ChIP), ChIP-chip, and other existing

techniques have provided a wealth of important information, but have drawbacks in terms of
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sensitivityto small changes in protein occupancy, spatialresolution, and ensemble averaging.
Certain information can only be obtained via single-molecule (SM) analysis, such as seeing
direct correlations between polymerases and nucleosomes on individual fibers or differentiating

between some proposed models of chromatin remodeling.

To obtain this type of information, we are developing a single-molecule method for mapping
polymerases and nucleosomes on chromatin based on optical tweezers unzipping of native
chromatin molecules. Ithas been shown that SM DNA unzipping can map the positions of
mononucleosomes assembled in vitro based on a repeatable nucleosome unzipping force
profile. We expect RNA Polymerase II(Pol IT)complexes to also have a repeatable unzipping
force profile, but distinguishable from nucleosomes and perhaps also indicating the sense /
antisense orientation of the Pol II. The Pol ITdata is not yet available, but ifitis as expected,
then we anticipate thatSM unzipping of native chromatin fragments (extracted from living cells)
will provide high-resolution mapping of nucleosomes and Pol II molecules (along with

orientation) on individualchromatin fibers.

Digest genomic DNA Ligate fragments to Record high resolution
or chromatin with “unzippingconstructs”, force versus unzipping
site-specific endonuclease unzip single-molecule tethers fork location
Optical !
& § nucleosome—s TrF;p !
MY & .:3"5'3&:#' RNAPol Il —> /_/_,»H
L 7 *s«""
A DNA
loy, = ~ oo 1200 1400 1600 1900 2000
‘. is £ L . -
!:% -’hﬂs’ o’ Unzipping force location (basepair index)
éﬁ- &?i Cowverglass l
Local Information Bithn Global Genome Location
High-resolution (3 bp) information M Match to library of simulated
aboutstructural genome variationand = unzipping forces assigns exact
nucleosome, polymerase locations P locationingenome

Figure 1 Overview of process for shotgun chromatin mapping (to be changed for real
paper / no beer can).

We may be able to obtain important information from high-resolution SM mapping on individual
fragments, even if their specific location in the genome were unknown. For example, the
electron microscopy analysis of chromatin and RNA transcripts has demonstrated the utilityof
SM information even when the identityof the genes was unkown. However, itwould be much
more powerfuland thus desirable to obtain high-resolution SM information about specificgenes
or other sites in the genome of interest. For example, sitespecificSM analysis may provide
crucial insight into the issues of promoter-proximal Pol ITpausing and antisense transcription
which have recently been shown to be very important. Thus, we are pursuing methods for
site-specific SM analysis of chromatin. The firstway we have tried to do this is by
engineering unique restriction sites into the yeast genome (IScel) at a specificsite. This has

proven difficult,and has the disadvantage of requiring genetic engineering of allmutant strains
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and cell types that willbe analyzed. Thus, we are now pursuing a second way of achieving
site-specificitywhich is to unzip random chromatin fragments ina high-throughput fashion, and
then figuring out from which specific site of the genome itcame. We call this shotgun
chromatin mapping (SCM) and itbased on a method for indentifying the genomic location of

naked DNA fragments (see Fig.1).

Ithas been shown that the unzipping forces for a known sequence of DNA can be accurately
predicted by statisticalmechanical models. Furthermore, at this time many genomes have
been published and the number is rapidly increasing. These two facts together led us to
believe that the naked DNA experimental unzipping forces would allow us to identify the
genomic location of random DNA fragments. We call this process shotgun DNA mapping
(SDM). The basic procedure is to compare an unknown fragment's force data to a library of
known possible fragments’ simulated unzipped force data. The fragment possibilitiescan be
limited, for example, by digestion with a site-specificrestriction endonuclease. In a successful
method, the experimental data will reliably match up the best with the simulation of its true
sequence. The identifyof a DNA fragment could be easily identified manually (“by eye”) from
among a handful of possibilities, but itremains to be shown whether the simulations can be
accurate enough for automated identification a fragment from the background of thousands of

fragments expected from sitespecificdigestion of genomic DNA.

In thispaper, we show that SDM ispossible. Specifically,we demonstrate that the modeling of
the pBR322 unzipping forces is sufficientlyaccurate so that experimental data are successfully
matched to the pBR322 sequence hidden ina background of the [~2700] XhoI fragments from
the yeast genome. We explainour methods, show where to obtain our software and data, and
discuss further potentialimprovements which indicate itwillalso be successfulwithmuch larger
fragment libraries. We feel this technique will be a key enabler of our goal of shotgun
chromatin mapping. Furthermore, we envision other high impact applications, for example
single-molecule structuralgenome mapping and new assays for screening protein binding sites

by shotgun DNA mapping inthe presence of purified proteins.

Methods

All computations below were carried out using a [Dell duoCore blah blah blah, running

Windows XP blah.LabVIEW 7.1 "developer’'ssuite?” with analysis libraries?]

Experimental single-molecule unzipping data

We obtained force (F) versus unzipping index (j)for [~32] data sets of unzipping pBR322 from
the published data of Koch et al.. Data were obtained and analyzed with optical tweezers and
unzipping constructs as described. (Data acquisition software available on openwetware. Data
analysis software available on request.) The format of these data sets istab delimited text files,
with the “Force (pN)” and “index (j)”columns used by us. The [~32] raw data sets are available
[here]. We used particulardata sets with a stretch rate of blank which seem tohave significant

viscous drag due to high stretching rate.
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Data were smoothed according to a sliding boxcar smoothing algorithm we implemented in
LabVIEW. We used a 30 pointwindow with equal weighting toeach point in the window, and a
window step size of j=1. [STEVE: check detailsthow many points,was data sorted fversus j?]
Smoothed data sets were stored in text files of the same format as the simulated data (below)

and are available [here].

Extraction of yeast genome Xhol sites
We obtained the yeast genome (S. Cerevisiae) from yeastgenome.org (Specificwebsite and
downloading method and date). We downloaded a text fileforeach chromosome of the yeast

genome. We wrote a LabVIEW applicationtodo the following:
® Read ina sequence textfile
® Eliminate white space and non-DNA base information
® Search forXhoI recognition sites (CTCGAG)

® For each recognition site two fragments were formed, 2000 base pairs before the site
and 2000 base pairs after. These were stored as textfilessequence only with a naming
convention Chromosome Number/Recognition Site Index, Downstream or Upstream.
For example blAH. These are available [HERE]. Upstream fragments are reversed so

as tobegin with the XhoI recognition site.

® Additionally the pBR322 sequence used in Koch 2002 was manually added to the

sequence librarywith a code name toblind itfrom the data analyzers.

O The pBR322 fragment used for the experimental work was created from EarI

digestion of the plasmid. This specificfragment

Creation of Simulation Library for Yeast XhoI Sites

Methods for simulating unzipping of the above fragments was as in previous work by

Bockelmann et al.with slightmodifications. Our Hamiltonian was:
Formula: E_total=E_DNA + E_FJC

where E_DNA accounts for the energy of the base pairing, and E_FJC is the mechanical
energy of the stretched ssDNA. This is simplified from the work of Bockelmann et al.by not
including the optical tweezer energy. Further we ignored elastic energy from the dsDNA

anchoring fragment used inthe unzipping experiments. E_DNA fora given jisthe sum of E_i
where E_1i is (1.3 forA-T or 2.9 forG-C). Values forE_i were obtained from Bockelmann et al.

E_FJC fora given jand lis:

Formula: xF- Integral(x(F’)dF’).
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x(F) is the extensible FJC (check '97 Wang/Block paper for citation). We used values of blah
(persistence length..) from Koch 2002. The integralwas computed numericallyinsteps of [.01

pN]. The F fora given x was found using Newton’s Method with a cut offof Blah.

We wrote an algorithm inLabVIEW to calculate expectation values forF, j,and the variance of
each for a given a DNA sequence and end to end length, 1. The expectation values were
calculated by simple sums over allpossible jvalues (from 1 to the length of the sequence).
Simulated F versus jcurves were then generated by embedding this algorithm in a loop that
stepped over varying values forl. An automated process loaded each sequence and produced
F versus jcurves for all yeast XhoI fragments in the library. For this work, the expectation
values were calculated insteps of 1 nm from 1 nm to2200 nm and sums over jfrom 1 to2000.
Simulation results were stored in text files, one file for each XhoI fragment and are available

[here].

Matching algorithms

We devised an algorithm that can produce a quantitativemeasure of the similaritybetween two
force versus jcurves. We callthismeasure the match score (m), and itis derived from the

standard deviation of the two curves ina given interval. To compute m we used this formula:
KgT N

v Al T

2(;() JZ;N ({ Fx_r- xp > — fom })2

Formula m=...

where F°®® and FS"™ are the experimental and simulated unzipping forces respectively (as a
function of j),kB isthe Boltzman constant,T istemperature, and C , is the single-stranded DNA

contour length per nucleotide.

We wrote a LabVIEW application tocalculate the match scores foreach experimentaldata sets
against the entire simulation library. These resultswere stored ina LabVIEW array with each
row being one experimental data set. For allmatch scores in this paper we summed from j=
1200 toj= 1700 insteps of 1. Choice of thiswindow size and location isdiscussed below and
was assisted by a repeatedly running this matching algorithm for various window sizes and

locations.

Robustness Analysis

We created a histogram of allincorrectmatch scores (noise) with bin size of [BLAH]. Then the
histogram was fitto a Gaussian using [Specific algorithm] from OriginPro (OriginLab,
City). A second histogram for allcorrect match scores was created with a bin size of [blah],
and also fitto a Guassian using the same algorithm. An estimate of the robustness was
produced by comparing the difference of the means of signal to noise relative to the standard
deviation of the noise. (We might integrate the overlap of the two Guassians. Larry likes this

idea)
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Results

Experimental single-molecule unzipping data

We smoothed [~32] data sets forunzipping of an EarI fragment of pBR322. Fig.X shows force
versus unzipping index of the raw and 30-point window-smoothed data for one of these
fragments. (figure not yet included) In the figure isa noticeable increase in the unzipping force
for j>1000. This isdue to a significant increase in the unzipping rate above j=1000, because

the original purpose of these data sets (Koch 2002) was to probe protein occupancy, where an

increased unzipping rate is desirable and a systematic shiftin unzipping force is not an issue.
[Possibly show smoothing from 10 pointwindow as well,and say we chose the 30 pointwindow

“justcuz”] [Supplementary info /data not shown: offset estimated by comparison with non-fast

data set.]

Extraction of yeast genome XhoI sites

We found [~1350] XhoI sites in the yeast genome, which produced a library of [~2700]
upstream and downstream unzipping fragments. <10 XhoI sites were within 2000 bp from the
end of the chromosome, producing fragments less than the desired 2000 bp. The entiresearch
and extraction took [only a few minutes] on our platform. These fragments produced nonsense
match scores, which were then discarded. Also, by chance, some XhoI sites were separated
by less than 2000 basepairs, and thus some fragments included XhoI recognition sequences.
In an actual shotgun DNA mapping experiment, these XhoI sites could produce shortened
fragments, depending on the levelof completion of digestion. We did not account for thiseffect

inthispaper. The resulting library (available here) included the hidden pBR322 fragment.

Creation of Simulation Library for Yeast XhoI Sites

The force (f) versus unzipping index (j)was simulated for every fragment in the sequence
library from 1= 1 nm to0 2200 nm. Simulation of [~2700] files took approximately __ hours on
our computational platform. Examples of these simulated curves can be seen in Fig. 2A and
Fig. 2B. Forces varied from blah to blah pN, and in the range j= 1200 to j= 1800, forces
ranged from blah toblah pN, with a mean of blah and a standard deviation of blah. Simulations

were stored ina libraryof tab delimited text filesand are available here.
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Figure 2 Experimental unzipping data compared with (A) correct and (B) incorrect
simulation. The green window indicates the region from 3j=1200 to 1700 where the match scores were

computed. The greatlyincreased separation of the two curves inthe incorrectmatch isreflected inthe higher match
score of 0.8 versus 0.2 forthe correctmatch.

Matching algorithms

A key feature of the shotgun DNA mapping process is a mechanism for producing a
quantitative number comparing an experimental data set and an entry in the simulation library.
We firstattempted a cross-correlation algorithm (as in Shundrovsky 2006, data not shown),
which was unsatisfactory due to the insensitivityof cross-correlation to vertical shifts. That is,
the cross-correlation score does not change ifthe simulation forces are scaled by a factor of
10, for example. Because the unzipping forces reflect the energy of the DNA basepairing,
which isdirectlyrelated to the DNA sequence, absolute unzipping force isan important factor in
identifying an unknown fragment. Thus, we developed a method based on the standard

deviation between the two curves, as described inthe methods.

Window size

The green box highlights the window over which the match scores were computed (j=1200 to
1700). There were a number of reasons forchoosing thiswindow size and location. For some

shotgun DNA mapping applications, itwillbe desirable to have the matching window as close
to the initialunzipping sequence as possible. However our current implementation of the DNA

unzipping simulation does not account for the opticaltweezers compliance, nor the compliance
of the 1.1 kilobases of dsDNA that was used to anchor the segment to the coverglass. This
added compliance iscriticalin the initialunzipping region, where the length of single-stranded
DNA isrelatively low and thus much stiffer. Thus, we are not yet capable of using this region
forour attempts. Furthermore, the data sets we are using have a discontinuous unzipping rate,
switching at j~=1000 from a slow unzipping rate (x rate) with large data averaging to a fast
unzipping rate (x rate) with no data averaging. Thus, our window must lieon either side of this
transition. Neither side is ideal (too much averaging for j<1000 and viscous drag for j>1000),
which may demonstrate the robustness of our method. We chose j>1000 due because the
large amount of averaging of the raw data during acquisition made the j<1000 data too

unappealing.
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The abilityto use a smaller window size is also desirable for shotgun mapping applications.
We investigated the results of smaller window sizes and found that smaller windows (for
example 100 basepairs wide) produced results that were more dependent on the overall
location of the window (results from poor to justas good as we show here, data not shown). In
contrast, the 500 basepair window was relatively insensitive to location. We chose to use the
500 base pair window so that window location would not significantly affect our proof-of-

principle results.

Shotgun Mapping Results
Fig. 2A and Fig 2B show a comparison of the F versus j
curves for the correct match as well as an incorrect match,

respectively. By eye, itcan easily be seen that there is a

larger deviation between the two curves in the Fig 2B. This is
reflected by the increased white space between the curves,

and iseffectivelywhat our matching algorithm quantifies,with 06 10'00 20'00 30'00 a
score of zero reflecting a perfectmatch. For thisparticulardata FilbN11m hor M vh )

set, the match score was 0.2, and the mismatch shown Figure 3 Compilation of

match scores for a single

produced a score of 0.8. .
experimental data set. The

Th tch £ £hi. ) tal inst th file number is an arbitrary, arising
m r r X rimen r in
€ ate scores *fo S expe ental curve agains e from the order in which the library

entire library are shown in Fig. 3. In order to prevent biasing simulations were loaded. A perfect

s . match would have a score of zero
our initial assessments of our method, we produced this !

and the correct match can be seen

figure blindly, with the identityof the correct match unknown 45 having the lowest score, very

to the operator of the shotgun mapping application. We  distinguishable from the incorrect
found that one match score fellfar below the mean of allthe matehes.

match scores (5 sigma away), and was significantlylower than even the next best match score.
At this point, we unblinded the filenumber of the correct match, the pBR322 simulation and
confirmed that our algorithm successful identified the experimental fragment, based on the

criteriaof best match score.

Robustness Analysis

Fig. 3 shows successful shotgun DNA mapping for one of the experimental data sets. We
repeated this for all [~32] data sets and the correct match was the best score in every case.
We did not find any instance of incorrect assignment for the window size and location we
chose. [Possibly mention failures for non-optimized windows here.] Assuming a Poisson
distribution, we estimate the rate of false positives is less than [value to be determined] for this
particular case (confidence interval = ). To better visualize the robustness, we created
histograms of all the scores for all the matches (N=[~32]) and all the mismatches
(N=[~2700]*[~32]) and fitthese histograms to Gaussian functions. These data are shown in
Fig. 4., with the correct matches in blue and the mismatches in red. The integrated area of

overlap between the two Guassian fits is __ % (a tiny number), another indicator of the
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expected rate of false positives. The only overlap is in the tails of the Gaussians, a region
where itis likely that the true experiments would significantly differ from a normal distribution,

so thisonly provides an estimate of the true error rate.

The robustness shown inFig 4 issomewhat surprising, given the effect of viscous drag on the
experimentalunzipping forces. We found thatthe match scores relative to the mismatches was
not much different for these data sets, compared to one data set we obtained without the
viscous drag effect (data not shown). A possible explanation for this is that the pBR322
sequence has high GC content in the comparison region, and thus a vertical shiftof the data
merely tends to shiftboth the correct matches AND the mismatches to higher values, without

increasing the overlap of the two histograms shown inFig. 4.

These results give us confidence that we willbe able to perform
SDM of yeast genomic DNA. TItisinthisapplication thatwe willuse
XhoI fragments, unlike in this proof-ofprinciplewhere we have used
existing pBR322 unzipping data. The reasoning behind the use of
published pBR322 is that the facilities for unzipping XhoI-digested
yeast DNA isunavailable to us at this time. Itis possible that the

pPBR322 sequence has special features that may cause us to

05 10
M atch Score overestimate the likelihood of success of the SDM method. We fell

Figure 4 Comparison of thisisnot likelythe case for two reasons: (1) we don’tsee anything
[~32] match scores to
all mismatch scores.
Blue histogram represents the Promising results from other experimental data, namely from

special in the pBR322 sequence by eye and (2) we obtained

match scores for the [-32] Lcpg81 which is an unrelated, highly repetitive plasmid (data not

experimental data sets, while
red histogram (will) represent shown).

all incorrect match scores.
Solid lines are fitsto the FUuture Improvements
normal distribution. Overlap of

the two distributions indicates
probabilityof false positives. recognition sites ina genome the size of yeast. Itisnot clear how

Based on our results, we expect SDM will work well for 6bp

well itwillwork for shorter recognition sites or larger genomes, both of which willproduce much
larger libraries (for example XhoI sites in the human genome). There are many independent
avenues of optimization which gives us great confidence that this willwork for these much
larger libraries. These opportunities include: data acquisition, data processing, improved

simulation algorithms and matching algorithms.

One very promising avenue is to improve the simulation by including the base stacking
interactions and elastic energy of the dsDNA anchor. These known systematic errors in the
existing simulation do not currently inhibitthe function of the simulation. However, elimination
of these errors willallows us to work with much larger libraries and matching windows much

closer the initialunzipping point.

Improving the matching algorithm is another promising and independent avenue for
optimization. Currentlywe have a simple algorithm based on the standard deviation between

the two curves. There are clear opportunities to explore more advanced manipulations of the
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data in order to improve the signal to noise ratio. First,optical tweezers data can have slight
length errors due tomicrosphere size variation, drift,or other causes. We can account for this
possible shiftin our algorithm by allowing for stretching of the data sets. Next, we can develop
an independent match criteria that when combined with the current criteria dramatically
increase the signal tonoise ratio. This may include Fourier space manipulations such as cross-
correlation which we found ineffective on itsown but may add value in combination with the

currentmatch criteria.

Missing: comparison with and discussion about opticalrestrictionmapping;

Conclusions and Future Work

® Looks like itworks — very promising that shotgun mapping willwork with 6 basepair

recognition sequences inyeast DNA.

® We're pursuing attempts with XhoI digested genomic DNA (purpose of chromatin

mapping and telomeres?)

® High-throughput strategies must be implemented in the future and will enable both

shotgun chromatin mapping and other applications in structuralgenome mapping etc.
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