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A fundamental property of most animals is the ability to see whether an object is 

approaching on a direct collision course and, if so, when it will collide. Using high-

density electroencephalography in 5- to 11-month-old infants and a looming 

stimulus approaching under three different accelerations, we investigated how the 

young human nervous system extracts and processes information for impending 

collision. Here we show that infants’ looming related brain activity is characterized 

by theta oscillations. Source analyses reveal clear localised activity in the visual 

cortex. Analysing the temporal dynamics of the source waveform, we provide 

evidence that the temporal structure of different looming stimuli is sustained 

during processing in the more mature infant brain, providing infants with 

increasingly veridical time-to-collision information about looming danger as they 

grow older and become mobile. 

How does the infant brain sense looming danger? Throughout the animal 

kingdom, the sight of a rapidly approaching object usually signals danger and elicits 

avoidance reactions1-3. An approaching object on a direct collision course projects an 

expanding image on the retina, providing information that the object is approaching on a 

collision course and how imminent the collision is. Animal data about the types of 

neurons that react to such looming stimuli come from studies on the locust4,5 and the 

pigeon6. Looming stimuli creating travelling waves of neural activity in the visual 

cortex have been measured in adults7, and there is ample evidence that the human visual 
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system is specialized to detect and respond to approaching as opposed to receding 

motion8-11. Infants are also in need of neural structures allowing them to judge 

impending collisions adequately, especially as their mobility increases during the 

second half of the first year of life. Behavioural studies on blinking to visual stimuli on 

collision course12 and discrimination of changes in heading from optic flow13 show that 

prior to the onset of locomotion, infants have problems timing the blink and are less 

sensitive to optical collisions and flow. Recent developments in non-evasive, high-

density electroencephalography (EEG) with sufficiently high temporal resolution allow 

us to investigate how timing information for impending collision is processed in the 

infant brain. Research on animal spatial navigation14,15 highlights the role of theta 

oscillations in providing a temporal code, suggesting there is spatial information in the 

precise timing of spikes with respect to the theta rhythm. In infancy, theta activity is 

strongly related to cognitive and anticipatory attentional processes16. Based on these 

findings, we explore the possibility that event related theta activity in the infant brain 

can provide the infant with information for impending collision. 

To this end, we recorded EEG activity using a Geodesic Sensor Net 20017

comprising 126 electrodes evenly distributed across the scalp. The vertex electrode (Cz) 

served as a reference and the EEG was sampled at 500Hz. During the entire experiment 

corneal reflection (Tobii x50) was used to record gaze of both eyes (50Hz). Using the 

‘hotspot’ visualisation technique (ClearView 2.2.0; Tobii Technology) plotting fixation 

length over time (see Fig. 1 for a typical example), we excluded trials in which infants 

did not look for the entire stimulus duration from further analyses. A total of 22 healthy, 

full-term prelocomotor 5- to 7-, 8- to 9-, and crawling 10- to 11-month-old infants were 

recruited from newspaper birth announcements. Eighteen (12 boys) provided data for 

the final sample, six in each age group. Parents gave their informed written consent 

prior to inclusion in the study according to the Helsinki Declaration. The experimental 
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setup is shown in Fig. 1 and Supplementary Video 1. (See temporary video preview at: 

http://www.svt.ntnu.no/psy/NuLab/NatureSuppVid1.html)

Insert Figure 1 about here

A total of 502 trials where the looming stimulus approached the infants on a direct 

collision course under three different constant accelerations were recorded. Animals 

have an evolved bias for looming events. Similar to findings obtained from the nucleus 

rotundus of pigeons6 and the auditory cortex in monkeys18, control trials where the 

virtual object’s trajectory did not approach on a direct collision course, but veered off to 

the left or right or contracted11, elicited much smaller evoked responses in our infant 

participants and were therefore not included in the present analyses. Infants were very 

impressed with our looming stimulus and frequently blinked to protect their eyes. EEG 

records were inspected for artefacts or poor recordings, and individual channels or 

localisations within trials were eliminated from the analyses if they occurred, resulting 

in a rejection rate of 12%. On average, each infant contributed 24 (SD = 8) trials to the 

experiment. 

In order to specifically locate brain activity in response to looming we applied 

Brain Electrical Source Analysis (BESA 5.1, MEGIS software GmbH19). The BESA 

algorithm estimates the location and the orientation of multiple equivalent dipolar 

sources by calculating the scalp distribution that would be obtained for a given dipole 

model (forward solution) and comparing it to the original visual evoked potential (VEP) 

distribution. Interactive changes in the location and orientation in the dipole sources 

lead to minimisation of the residual variance between the model and the observed 

spatio-temporal VEP distribution20.

Here we used a predefined surrogate dipole model of the visual areas21 including 

standard 10-20 sites O1, Oz, and O2. Dipoles at these sites were fitted around peak 
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looming VEP activity, providing source waveforms (SWF) of the modelled brain 

regions as a direct measure of their activities on a trial-by-trial basis. Two particular 

dipoles VCrL (visual cortex lateral left) and VCrR (visual cortex lateral right) showed 

consistent symmetrical synchronised activity in response to our looming stimulus. 

However, brain activity at dipole VCrL (see Supplementary Video 2) started earlier (P < 

0.01) and remained active longer (P < 0.01). (See temporary video preview at: 

http://www.svt.ntnu.no/psy/NuLab/NatureSuppVid2.html)

To analyse the overall effect of looming on oscillatory neuronal synchronisation 

in dipole VCrL, a time-frequency analysis22 on grand average data across age group and 

looming speed was performed, showing that evoked event related oscillations in 

response to the looming stimulus predominantly took place within the theta range (Fig. 

2). These findings are consistent with neurophysiological studies in humans showing 

that theta synchronisation in cortical structures plays an important role in attentional 

mechanisms providing the necessary conditions for an effective registration and 

processing of perceptual information23-25.

Insert Figure 2 about here

By following the same procedure as in 19, a 4-shell ellipsoidal head model was 

created for every trial, and a predefined model of the visual cortex was inserted as 

dipoles into the head model. This model was then applied to the raw data transforming 

the EEG scalp signal to separate brain space signals (see Supplementary Fig. 1) 

resulting in a new EEG voltage sequence over time. The results of this analysis for 

source waveform activity at dipole VCrL (Fig. 3a, dipole shown in head model in blue) 

are shown for the three infant age groups (Fig. 3b-d). Overall shape of the source 

waveforms was similar at the different ages. However, source waveform duration 

ranged from relatively short durations of about 50 ms in the 10- to 11-month-olds to 
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twice as long durations in the 5- to 7-month-olds, revealing a significant developmental 

trend in processing time (F(2,15) = 7.07, P < 0.01).

Insert Figure 3 about here

Source waveform activity per se did not discriminate well between looms. 

Therefore, we performed an extrinsic tau-coupling analysis26-28 on the VCrL SWF. For 

each trial, the desynchronization phase of the SWF and its rate of change were plotted 

against time (Fig. 4a), as well as the corresponding visual angle of the looming stimulus 

and its rate of change (Fig. 4b). The peak velocity of each SWF was identified and 

demarcated at 10%, or as close to 10% as possible, of this value. The tau of SWF 

activity during desynchronization (i.e., the tau values between the beginning and end of 

desynchronization, �SWF) and the corresponding tau of the loom (�loom) were calculated 

using the general equation: �(x) = x/ x�  (Fig. 4c) and plotted against each other (Fig. 4d). 

Finally, a recursive linear regression analysis was run on the plot to determine the 

strength of the coupling between �SWF and �loom (measured by the r2 value of the 

regression) and to estimate the value of the constant K in the tau-coupling equation �SWF

= K�loom (measured by the slope of the regression), by removing the leftmost points in 

the plot one by one until the r2 of the regression exceeded the criterion level which was 

set at 0.95, thus ensuring that 95% of the variance in the data was explained by a linear 

model. The percentage of the SWF during which it is tau-coupled to the loom was 

calculated by dividing the remaining points in the plot by the total number in the SWF. 

For the data presented in Fig. 4d the percentage tau-coupling was 79.4%, the r2 of the 

tau-coupling was 0.959, and the regression slope was 1.516. High percentages of 

extrinsic tau-coupling and high r2 values allow for the regression slope to be a good 

estimator of the coupling constant K.

Insert Figure 4 about here
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Averaged time-normalised tau-couplings are shown for the three looms for each 

of the three infant age groups separately (Fig. 3e-g). Values of ��were significantly > 1 

for all age groups and all looms (slow: t(17) = 3.03, P < 0.01; medium: t(17) = 3.95, P < 

0.005; fast: t(17) = 6.64, P < 0.001), reflecting well the accelerating nature of our 

looming stimulus which hit the infants in the face at high velocity. When K > 1, as in 

our case, desynchronization of the SWF ends with progressively increasing acceleration. 

In comparison, K values between 0 < K < 1 would indicate that SWF desynchronization 

ended while decelerating (see 26 for mathematical proof). A repeated measures ANOVA 

revealed a significant loom x group interaction (F(4,30) = 3.225, P < 0.03), indicating 

that the 10- to 11-month-olds differentiated well between the three looms with 

increasing values of K for faster looms, while the younger infants did not. Especially the 

5- to 7-month-olds, judging by their K values all lying around 1.3, appeared to process 

all looms as if they were fast looms (Fig. 3g). These findings suggest well-established 

neural networks for registering impending collision in 10- to 11-month-olds, but not yet 

in 5- to 7-month-olds. The 8- to 9-month-old infants displayed an in-between 

developmental stage. This could be interpreted as a sign that appropriate neural 

networks are in the process of being established and that the age of 8-9 months would 

be an important age for doing so. Coincidentally, this is also the average age at which 

infants start crawling. This makes sense from a perspective where brain and behavioural 

development go hand-in-hand29. Namely, as infants gain better control of self-produced 

locomotion, their perceptual abilities for sensing looming danger improve. 

We propose that as a function of perceptuo-motor development the temporal 

structure of looming information is increasingly well differentiated in the neural 

circuitry of the infant brain, providing infants with important time-to-collision 

information. By analysing the tau of theta oscillations in the visual cortex in response to 

the looms we were able to reveal a temporal structure of theta activity that is consistent 

with that present in the looming information. Tau of a neural current is biologically 
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viable neural information because it would flow through neural networks with its value 

being unaffected by changes in the impedances of the synapses. In contrast, the 

amplitude of neural current would be distorted by such factors, and so is not as robust 

information. Our results suggest that when looming-related electric energy is travelling 

through the infant brain, its temporal structure provides the appropriate brain parts with 

veridical sensory looming information. Judging from the spatial location and temporal 

progression of our VCrL dipole, a likely area for processing this type of information 

would be where brain signals are progressing from visual cortical area V1 to V3 and 

V5/MT+, the (extra)striate areas (cf. 30). 
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Figure 1. The experimental setup and diagram of stimulus configuration (a) and 

procedure (b). Each infant was shown a semi-randomised sequence of an 

image of a circular disk on a collision course. As the virtual object approaches 

the eye, its image size on the screen grows. The looming stimulus simulated an 

object coming from far away (subtending 5° at the eye, �) approaching for a 

duration of 2, 3, and 4s under three different constant accelerations (21.1, 9.4, 

and 5.3 m/s2, respectively), and finally ‘hitting’ the infants in the face (� = 131°). 

Movement stopped when the image filled the entire screen. 

Figure 2. Temporal-spectral evolution of percentage amplitude change at 

source VCrL. Time-frequency display of grand average data (across age 

groups and looms) where the amplitude for each time instant is normalised to 

the mean amplitude of the baseline epoch for that frequency. To this end, 

individual looming trials were aligned by peak amplitude and analysed with an 

epoch length of -300:300 ms and a baseline of -300:-200 ms. Spectral change 

over time at dipole VCrL is indicated by the red cloud in the background 

indicating an overall 63% increase in activity between 0.1–7.5 Hz. The outlined 

areas in red, blue, and black indicate where a significant increase in brain 

activity was found for the three age groups separately. These were between 

0.1–8 Hz (delta/theta/alpha range) for the 5- to 7-month-olds (P < 0.001), 

between 4–7 Hz (theta range) for the 8- to 9-month-olds (P < 0.001), and 

between 2-6 Hz (delta/theta range) for the 10- to 11-month-olds (P < 0.005). 

Figure 3. (a) Accelerating looming stimulus approaching the infants’ eyes 

resulting in increased theta activity in the visual cortex. A 4-shell ellipsoidal 

head model was created for every trial and used as a source montage to 

transform the recorded EEG data from electrode level into brain source space. 

The results of this analysis for dipole VCrL (depicted in head model in blue) are 

shown for the three infant age groups (b-d). Each graph shows average, peak-
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aligned source waveform activity at dipole VCrL (including standard error bars) 

for the three looms. Overall shape of the source waveforms was similar at the 

different ages, but their duration was about twice as long in the 5- to 7-month-

olds as compared to the 10- to 11-month-olds. Source waveform activity did not 

discriminate well between looms. Therefore, the source waveform was tau-

coupled26,27 onto the loom to study the temporal dynamics of neural activity (see 

Fig. 4). (e-g) Average tau-coupling plots, �SWF vs �loom (including standard error 

bars), for each age group for the three looms, showing that crawling 10- to 11-

month-olds differentiated well between looms, whereas younger prelocomotor 

infants did not.  

Figure 4. Tau-coupling analysis. Two variables, X and Y, are tau-coupled if 

��X) = K��Y), where K is a coupling constant. (a) Showing how SWF activity, X, 

and its rate of change, X� , changed continuously during a typical infant’s brain 

response to a fast loom (b) Showing how the visual angle of the looming 

stimulus, Y, and its rate of change, �Y , increased continuously during the loom’s 

progression. The tau of SWF activity (�(X), or X/ X� ) during desynchronization 

(area between vertical lines) is plotted against time in (c) together with the 

corresponding tau for the loom (�(Y), or Y/ �Y ). (d) Plotting �(X) against �(Y) in order 

to find the percentage tau-coupling by means of a recursive linear regression. 

To ensure that 95% of the variance in the data was explained by a linear model, 

only regression strengths of r2 > 0.95 were accepted, meaning that the first 

seven data points from the original data set were omitted. The remaining points 

in the plot were divided by the total number of points in the desynchronization, 

providing an estimate of how much of the SWF was tau-coupled to the loom. 

Here, percentage tau-coupling was 79.4%, r2 of the coupling 0.959, and the 

regression slope 1.516. 
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Supplementary Online Information 

Supplementary Figure 1 

 (a) Raw EEG data of a single 2s (fast) looming trial displayed using standard 

10-20 sites. Note increased activity at sites O1, Oz and O2 as a direct response 

to the loom, with vertical yellow line marking peak activity. The inserted 3D 

mapping window visualizes a build-up and decline over time of EEG voltage in 

the visual cortex (0 ms = peak activity at vertical yellow line) (see 

Supplementary Video 3). (See temporary video preview at: 

http://www.svt.ntnu.no/psy/NuLab/NatureSuppVid3.html). 

(b) Source analysis of the same trial, using a predefined surrogate dipole model 

of the visual areas21, including O1, Oz, and O2. Dipoles at these sites were 

fitted -200:200 ms around peak VEP activity as indicated by yellow line in (a), 

providing source waveforms (SWF) of the modelled brain regions as a direct 

measure of their activities on a trial-by-trial basis (centre lower panel). Two 

dipoles, VCrL (blue curve) and VCrR (red curve), showed consistent 

symmetrical synchronised activity in response to our looming stimulus. Top right 

panel shows the relative contribution (position and direction) of each dipole to 

the model. Bottom right panel shows a Multiple-Source Beam Former image of 

evoked brain responses to the looming stimulus, revealing involvement of 

primary visual areas in the occipital cortex and of the right-hemispheric MT+ 

area (see Supplementary Video 2). 
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Supplementary Video 1: The looming stimulus 

This movie shows an 8-month-old infant ready for testing and a diagram of our 

experimental setup (see also Fig. 1). The infant is watching the looming stimuli 

approaching under three different accelerations.  The blue dot moving in the 

middle of the looming circle represents the infant’s gaze of both eyes collected 

by the Tobii eye-tracker and was used to confirm that the infant was attending 

the looming stimuli (Quicktime; MPEG4; 14 226KB). For temporary video 

preview see: (http://www.svt.ntnu.no/psy/NuLab/NatureSuppVid1.html) 

Supplementary Video 2: VCrL dipole activity 

This movie shows VCrL dipole source waveform activity in the O1 region of an 

8-month-old infant in response to a medium loom (9.4 m/s2). Activity is shown in 

slow motion (see running time in ms) for clarity. (Quicktime; MPEG4; 16 

706KB). For temporary video preview see: 

(http://www.svt.ntnu.no/psy/NuLab/NatureSuppVid2.html) 

Supplementary Video 3: VEP surface activity 

This movie shows in real time VEP surface activity in the O1, Oz, O2 region (in 

blue) in response to a fast loom (21.1 m/s2) in an 8-month-old infant. The same 

trial is also repeated in slow motion for clarity (Quicktime; MPEG4; 5 003KB). 

For temporary video preview see:     

(http://www.svt.ntnu.no/psy/NuLab/NatureSuppVid3.html) 

Supplementary Cover Proposal 1: The looming stimulus (large circle with four 

brightly colored inner circles) and resulting brain activity in a spatio-temporal 

cortical map superimposed on photographs of infant participants. 
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Supplementary Cover Proposal 2: The looming stimulus (large circle with four 

brightly colored inner circles) and resulting brain activity in a spatio-temporal 

cortical map superimposed on the photograph of a participating infant. 










	Article File #1
	Figure 1 - The experimental setup
	Figure 2 - Temporal-spectral evolution
	Figure 3 - Dipole vs Tau
	Figure 4 - Tau coupling analysis

