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Abstract

The multi-stage hypothesis suggests that cancers develop through a single defined se-
ries of genetic alterations. This hypothesis was first suggested over 50 years ago based
upon age-specific incidence data. However, recent molecular studies of tumors in-
dicate that multiple routes exist to the formation of cancer, not a single route. This
parallel route hypothesis has not been tested with age-specific incidence data. To test
the parallel route hypothesis, I formulated it in terms of a mathematical equation, con-
firmed this equation with computer simulations, then tested whether this equation was
consistent with age-specific incidence data compiled by the Surveillance Epidemiology
and End Results (SEER) cancer registries since 1973. I used the chi-squared goodness
of fit test to measure consistency. I found that the age-specific incidence data from most
human carcinomas, including those of the colon, lung, prostate, and breast were con-
sistent with the parallel route hypothesis. However, this hypothesis is only consistent
if an immune sub-population exists, one that will never develop carcinoma. Further-
more, breast carcinoma has two distinct forms of the disease, and one of these occurs at
significantly different rates in different racial groups. I conclude that the parallel route
hypothesis is consistent with the age-specific incidence data only if carcinoma occurs
in a distinct sub population.
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Introduction

The multi-stage hypothesis [1, 2] states that cancers develop through a series of genetic alterations.
This hypothesis is schematically indicated by the following diagram,

Genel — Gene2 — - -- — Genen — Cancer. (Scheme 1)

Alterations occur successively in n genes (Genel, Gene2, . . ., Genen) before a tissue specific cancer
develops. The process is best studied in human colorectal cancers, where the first four genes in
the sequence have been identified as APC, K-ras, DCC, and p53 [2].

The multi-stage hypothesis was first suggested over 50 years ago based upon an analysis of the
age-specific incidence data [3, 4]. This data consists of a histogram of the age at which a population
develops cancer. It has long been interpreted to suggest that four to six rate-limiting events are
required for the formation of cancer.

Some problems exist with the multi-stage hypothesis. The sequence APC, K-ras, DCC, and
p53 is not the only route to developing colon cancer. This particular route accounts for a subset:
only about half of colorectal cancer patients have detectable mutations in the APC gene[5], and
alternative routes have been identified that do not involve APC [6].

Anomalies also exist with the age-specific incidence data that cannot be explained by the multi-
stage hypothesis. The incidence for several carcinomas drops at advanced ages[7, 8]. Breast carci-
noma incidence data is very different than the other carcinomas[9], and it varies depending on the
race and nationality of the population studied [10]. Prostate carcinoma incidence increases much
more rapidly with age than other carcinomas, implying that 20 to 30 mutations are required for its
development.

Based on several molecular studies[11, 12], it is now generally accepted that multiple parallel
routes exist to the formation of tumors, as indicated by the following diagram:

1Genel — 1Gene2 — --- — 1Genen; —
or
2Genel — 9Gene2 — --- — 5Geneng —

or — Cancer. (Scheme 2)

or
mGenel — ,,Gene2 — --- — ,,Genen,,, —

This parallel route hypothesis is a generalization of the multi-stage hypothesis. The number of
routes, m, and the number of genes involved in each route, ny,ns,ns, ..., n,, are not known for
any cancer. Just as the multi-stage hypothesis was tested against the age-specific incidence data,
so too can the parallel route hypothesis.

Mathematical models of the age-specific incidence of cancer have been an important tool to
understand the tumorigenesis process [13, 14]. For instance, Knudson’s two-hit hypothesis of
retinoblastoma age-incidence data led to the identification of the first tumor suppressor gene, Rb1
[15]. One of the few pieces of evidence about the human carcinogenesis process is epidemiological
data on the incidence as a function of age [16].

I tested the multiple parallel routes hypothesis by comparing a mathematical representation
of it to the age-specific incidence data for different forms of cancer. Following this, I examined the
implications of the hypothesis and attempted to better understand some of the anomalies of the
age-specific incidence data.
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Figure 1: This graph presents the results of computer simulations based upon the assumption
that carcinoma occurs through a single route, as depicted in Scheme 1. The points represent the
simulation results, while the solid line represents Equation 1. The inset shows the log-log graph
in the boxed region as the cancer age-incidence is usually shown

Results

I first performed computer simulations of Scheme 1 and Scheme 2 to confirm that Equation 1
is the appropriate mathematical representation of the multi-hit hypothesis (Scheme 1) and that
Equation 3 is the appropriate representation of the parallel route hypothesis (Scheme 2).

The results of these computer simulations are presented in Figure 1 for the multi-hit hypothe-
sis, and in Figure 2 for the parallel routes hypothesis. These results confirm that the appropriate
mathematical representation was used. In the case of Scheme 2, the results also show the relative
effect of the number of routes on the width of the age-specific incidence curve. Thus, Equation 3
is an appropriate representation of the parallel routes hypothesis.

To test the validity of the parallel routes hypothesis, I compared Equation 3 with the Surveil-
lance Epidemiology and End Results 17 registries (SEER-17) data collected in the year 2000 for the
age-specific incidence of colon carcinoma. The SEER-17 data is the most statistically powerful set
of age-specific incidence data available. The year 2000 data monitored 73 million people in the
United States and recorded over 22,000 cases of colon carcinoma. The population under surveil-
lance, an important factor, was directly measured by the 2000 US Census data. Thus, this is the
best data to use to test this hypothesis.

I found that the parallel route hypothesis is consistent with the colon carcinoma age-specific
incidence data, while the multi-stage hypothesis is not. To determine this, I compared the mathe-
matical representation of the parallel route hypothesis, Equation 3, with the age specific incidence
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Figure 2: This presents the results of computer simulations based upon the assumption that car-
cinoma may occur through multiple parallel routes. The four situations represent different as-
sumptions in the computer simulation of 1, 5, 20, or 50 different routes along which carcinoma
may occur. The solid lines represent the best fit to each, from Equation 3. The single route sim-
ulation, similar to that shown in Figure 1, is clearly not fit by the equation. The 5 parallel routes
exhibit slight systematic deviations from the equation, but the 20 and 50 route assumptions are
well described by the equation.

data. In the same manner, I also compared the mathematical representation of the multi-stage
hypothesis (the Armitage-Doll model Equation 2 [4]) with the age-specific incidence data. See
Figure 3. The specific results are that the probability one should accept the parallel route hypothe-
sis is 1072 (x? = 88, with 52 degrees of freedom), while the probability that one should accept the
multi-stage hypothesis (Equation 2 is 1078 (x* = 316, with 53 degrees of freedom), see Figure 3.
I also compared the colon carcinoma data to the exact representation of the multi-stage hypoth-
esis, Equation 1, and found that one should not accept this either, (x? = 172, with 52 degrees of
freedom, p = 10717).

The mathematical equation (Equation 3) of the parallel routes hypothesis has three parameters,
and each has a well defined meaning. The first parameter, o the susceptible population, describes
the fraction of the total population susceptible to this carcinoma. This parameter is always greater
than the actual fraction who develop the disease. The parameter a can vary from 0.0 to 1.0. The
second parameter, the mean time, 7, indicates the average time, measured from birth, for the for-
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Figure 3: This graph compares two different hypotheses for the development of carcinoma with
the age-specific incidence data. The multi-stage hypothesis, as represented by the Armitage-Doll
model, Equation 2 [17], and parallel route hypothesis, represented by Equation 3. The Armitage-
Doll model is an approximation of the differential form of the Poisson process, Equation 1. Using
this equation gives p = 107'7, a substantially better, but still clearly unacceptable fit. Thus, the
parallel route hypothesis is clearly acceptable, while the multi-stage hypothesis is not. The error
bars represent 95% confidence intervals in the measured values.

mation and detection of the cancer. This is a theoretical average, the actual average will always
be less, since many die from other causes before getting cancer. One would expect that environ-
mental influences can affect this parameter, and that may be one explanation for the variation
of times observed in the population. The third parameter, the standard deviation of the time, o,
quantifies this variation in the population. This variation can be attributed to either intrinsically
random processes, genetic variation, or environmental differences within the population. It is also
a function of the number of parallel routes, m, as shown in Scheme 2 and Figure 2.

Surprisingly, the age-specific incidence data implies that only about one of every five could
ever develop colon carcinoma through this process. This suggests the existence of two distinct
sub-populations that are determined either before birth or at a very young age, one is destined
to develop colon carcinoma, while the other will never develop it. Competing risk, or death due
to other diseases, does not confuse this interpretation, since this age-specific data corrects for
reductions in the population.

For the next test of the hypothesis, I used the SEER-9 data [18] to perform 31 similar tests (one
for each year from 1973 to 2003) on the four most common types of carcinoma: lung, colon, breast,
and prostate carcinoma. The SEER-9 data monitors fewer people than the SEER-17 data, but has
been collected since 1973. Using this data allows more independent tests of the hypothesis.

I found that the parallel routes hypothesis was consistent with the age-specific incidence date
for lung and colon carcinomas for all 32 years. However, the results for prostate and breast carci-
noma were more complicated. See Figure 4. Detailed graphs of the data, along with the parallel
routes hypothesis, are shown for 2003 in Figure 5. A table presenting the fraction of the population
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that is susceptible to the disease is shown in Table 1.

Table 1: This table shows an estimate of the fraction of the population susceptible to each form of
carcinoma, as measured by the parameter a.. The estimate is given as the mean value measured in
five recent years, with the standard deviation given in parenthesis.

Tissue Susceptible population («)
Colon 20 0(1.3)%
Lung (female) 9.4(0.4)%
Lung (male) 16 6(0 6)%
Breast A 5.1(0.7)%
Breast B 17. 2(1 4)%
Prostate 25(1)%

Prostate carcinoma age-specific incidence data was consistent with the parallel route hypoth-
esis until 1991, see Figure 4. The 1991 time period corresponds to the widespread adoption of
the PSA serum test for prostate cancer screening. The PSA test was first approved in 1986, but it
was initially used only to monitor the progress of prostate cancer patients. In 1991 a study [19]
showed that the best method of screening for prostate cancers is measurement of serum PSA levels
combined with digital rectal exams. This radically changed the diagnosis procedure for prostate
carcinoma.

Breast carcinoma has never (1973-2003) been consistent with Equation 3. Instead, I found that
breast carcinoma could only be consistent with the parallel routes hypothesis, if one assumes that
three different sub-populations exist, as expressed in Equation 4. One of these sub-populations is
not susceptible to the disease, while the other two sub-populations can develop breast carcinoma.
These distinct sub-populations probably develop distinct forms of the disease.

Other studies also suggest that two distinct forms of breast carcinomas exist. Early-onset breast
carcinoma is already a recognized subclass of the disease, typically being described as occurring
in women before the age of 35 [20-22]. My results indicate significant overlap between the early
and late onset forms, and age itself is insufficient to determine whether a woman has one form
of the disease or another. (Hence, I refer to these as breast carcinoma A and breast carcinoma
B). However, most cases (about 80%) diagnosed before the age of 35 will be breast carcinoma A.
Early-onset disease is biologically distinct [23, 24] from the late onset version and also a more
potent form of the disease [25, 26]. Furthermore, recent work comparing the age distribution
patterns for different histopathologic types of breast cancer using smoothed density plots[27, 28]
found results similar to ours [29], including a bimodal distribution of age at diagnosis, with one
mode centered about 50 years, and the second about 70 years. Hence, my conclusion is consistent
with an emerging view of breast cancer [22].

The origin of these two distinct sub-populations that develop breast carcinoma is unclear.
One possibility that these correspond to inherited and sporadic cancers seems unlikely. Three
of 211 (95% confidence intervals, 0%—7.2%) breast cancer patients in a population based study
were found to have inherited mutations in BRCA1 [30]. These small numbers of BRCA1 mutation
breast cancers are unlikely to be apparent in this data.

Finally, I applied this hypothesis to better understand the racial disparity in breast cancer. This
striking disparity exists in the prognosis for breast cancer patients in the United States. Although
African-Americans are less likely to contract the disease, a significantly larger percentage of these
patients die from it, compared to white patients. Furthermore this gap has been increasing over
the past few decades [31]. While the obvious cause, unequal treatment, may be responsible for
some of this disparity, it is not responsible for all. A detailed study of over 20,000 breast cancer
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Figure 4: This graph quantitatively shows the agreement between the SEER-9 data and the hy-
potheses (Equation 3 and Equation 4). The top panel displays the agreement, as measured by
a p-value, between lung and colon carcinoma and Equation 3, and between breast carcinoma
and Equation 4. In all cases the p-value, representing the probability that one should accept the
hypothesis, is greater than 0.001, and in most cases it exceeds 0.01. In contrast, the correspond-
ing graph for prostate carcinoma and Equation 3 shows that the p-value always exceeded 0.01,
until 1991 when it plunged below that level. Prostate carcinoma, post 1991, clearly cannot be ex-
plained by Equation 3, but it is in agreement with Equation 4. The 1991 change corresponds to the
widespread implementation of screening for prostate carcinoma using the PSA test.

patients treated in the equal access Department of Defense Health care system between 1980 and
1999 also revealed a consistent and growing disparity [32].

I reasoned that since early-onset breast cancer is known to be more deadly [25, 26] and that
80% of early-onset cases are breast carcinoma A then perhaps the racial disparity exists because
African-American women may be less likely to develop the breast carcinoma B. To test this, I ex-
tracted age-specific incidence data for the year 2000 for both African-American and white women
from the SEER-17 dataset. I simultaneously fit the mathematical equation of breast carcinoma
age-specific incidence (Equation 4) to each data set. I used the constraint that the breast carci-
noma A parameters were identical for both African American and white women, while the breast
carcinoma B parameters could vary.

I found that the age-specific incidence is consistent with the hypothesis that breast carcinoma A
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Figure 5: This is a comparison between the hypotheses and the observed age-specific incidence of
colon, lung, prostate, and breast carcinomas in 2003 as recorded by the SEER-9 registries. In each
case, the measured incidence is represented by a point and the 95% confidence intervals by error
bars. A solid line represents the hypothesis, (Equation 3 for colon, lung, and prostate carcinomas
and Equation 4 breast carcinomas) and the parameters for the model are indicated on the graph.

has no racial disparity, while breast carcinoma B incidence has substantial racial disparity. See
Figure 6. Breast carcinoma B accounts for three quarters of the cases of breast cancer in the United
States. A test that could distinguish breast carcinoma B from breast carcinoma A might give
promising prognosis information to many patients.

The results presented here indicate that the age-specific incidence data for most human carci-
nomas is consistent with the parallel route hypothesis as expressed in Equation 3 and Equation 4.
The parallel routes hypothesis, then, implies (through the age specific-incidence data) that only a
subset of the population is susceptible to developing each carcinoma. Other hypotheses may be
consistent with this equation, but the implications are not dependent upon the hypothesis.
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Figure 6: The breast carcinoma disparity between African-American and white women is not due
to breast carcinoma A, which occurs at exactly the same rate, but solely due to a difference in breast
carcinoma B. The data are from the SEER-17 database during the year 2000 [18]. In each case, the
measured incidence is represented by a point and the 95% confidence intervals by error bars.
The dark solid lines represents predicted incidence levels based upon the hypothesis, Equation 4,
which is the sum of breast carcinoma A and breast carcinoma B indicated by the other curves.

This may provide useful guidance for whole genome analysis of carcinomas. Although whole
genome analysis has identified genetic causes of some diseases [33], it has not shown similar
success when applied to carcinomas [34, 35]. One issue with whole genome analysis, which com-
pares genomes of those who have cancer with those who do not, is the proper identification of
samples without cancer. These samples may be from people who simply did not yet develop can-
cer. A second issue is that samples are usually drawn from peripheral blood and these would only
be sensitive to germ-line mutations. About 40% of children who develop retinoblastoma have a
germline mutation[36]. If these statistics are true for carcinomas, the current approach to whole
genome analysis will not be successful. Thus, this analysis may be useful in the design of whole
genome analysis of carcinomas by quantifying the population that will never develop carcinomas.

Finally, similar conclusions have been drawn by others [37-40] using different methods. Other
work on age-specific incidence has focused on the two stage with clonal expansion model [41-45]
and on developing novel techniques for the analysis of this data [8, 46, 47]. Different mechanisms
could explain the existence of a sub-populations susceptible to carcinoma. For instance, members
of this sub-population may have inherited susceptibility conferred through low-penetrance alleles
[48] or may have acquired a somatic mutation early in life [49].

In conclusion, the parallel routes hypothesis is consistent with the age-specific incidence data
for most common forms of human carcinoma. Furthermore, the age-specific incidence data sug-
gest that a only a measurable sub-population is likely to contract carcinoma.
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Methods

Computer Simulations I wrote a computer program to simulate Scheme 1 and Scheme 2. The
program tracked 100,000 subjects (people). For each subject, it kept a list of genes and routes.
Each route contained 50 genes, for Scheme 2. For each time step, a random integer was chosen
from 1 to 100 and a gene was said to be mutated if this number was equal to 1. If 50 genes were
found to be mutated in sequence, the subject was recorded as having developed cancer at that
time step. I chose 50 since recent sequencing studies have shown that 50-100 genes are mutated
in some forms of cancer [11, 12]. Similar results can be obtained using different numbers of genes
per route, mutation rates, and mutations required, although the time scales will be altered. I
also investigated cases in which different routes are not equally probable and where mutation
rates vary for different genes. In both cases, I obtained results similar to those in Figure 2. One
complication that needs further study is that some genes are almost certainly present in multiple
routes.

Mathematical Models The multi-step hypothesis implies that the cancer age-specific incidence
should follow a Poisson process. The differential form of the Poisson process is,

1) = = (k:()\t)k_l—()\t)k> (1)

where ) is the expected number of events that occur per unit time and £ is the number of rate
limiting events required before cancer occurs. However, the age-specific incidence is typically
modeled by the Armitage Doll equation[4],

I(t) ~ at" !, (2)

where a is an arbitrary constant and & is again the number of rate limiting events required before
cancer occurs. This is an approximation, valid for ¢ < 1/, of Equation 1. The condition ¢ < 1/
is equivalent to saying that only a small percentage of the population develops cancer.

The parallel route hypothesis is a combination of an unknown number of Poisson processes.
Thus, the Central Limit Theorem suggests that the age-specific incidence, I(t), of carcinoma for
the parallel route hypothesis is given by

()
It) =« e \ > (3)
(t) s :
where o represents the fraction of people susceptible to the cancer. This is the well-known normal
distribution, also called the Gaussian distribution, or bell-shaped curve.
If two distinct sub-populations can develop carcinoma through a different set of processes, the
observed age-specific incidence will be a linear combination of two independent functions,

I(t):oz;l( ! Qe_((t;%ﬁ)>+ag<\/172e_<(t;§)2>>. 4)

2moy 2moy

Hypothesis Testing To test the hypothesis that carcinoma age-specific incidence data follow
Equation 2, or Equation 3, or Equation 4, two steps are required. First, the unknown parameters,
(o, 7, and o, in the case of Equation 3) must be determined; I used maximum likelihood estimation
to do so. Second, the probability that the observed data was generated by the postulated equation
is determined. I used the chi-squared test for goodness-of-fit to determine this probability.
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The maximum likelihood estimator was

84

—y (O B ‘E’“ 5)

k=1

where Oy, is the observed number of carcinoma cases and E}, is the expected number of carcinoma
cases in each of the k = i to 84 age ranges. The SEER dataset provides counts of cancer cases (and
population data) in one year intervals from 0 to 84 years. It also includes data on all cases for
those greater than 85 years old, this was excluded. The minimum age used, ¢ years, was chosen
so that at least 10 cases were present in that year. It was typically in the 20s or 30s, depending
on the cancer. The expected number of cases, E}, was obtained by multiplying the age-corrected
incidence function I(t), by the population under surveillance in that age range.

Once the parameters were estimated, the chi-squared value was determined, from Equation 5.
A p-value, or probability that the fit should be accepted, was calculated based as the one-tailed
probability of the chi-squared distribution.

I took several measures to ensure over fitting was not a problem. Over fitting can be caused by
fitting an arbitrary mathematical function with multiple free parameters to a dataset. The defining
characteristic of over fitting is the inability of the model to fit multiple independent datasets. The
tirst step I took is to fit independent data sets from successive years. This gives me confidence that
the model is representative of the underlying data.

SEER Data I tested the models, Equation 3 and Equation 4, by fitting them to age-specific
incidence data from different carcinomas. The age-specific incidence data were recorded by the
SEER 9 registries [18]. The SEER registries have compiled cancer incidence information on a large
representative sub-population of US residents since 1973. From this database, I selected patients
diagnosed in a particular year with carcinoma in the indicated tissue. This excludes the small
number with other types of cancers, sarcomas for instance, which probably arise through a differ-
ent process. The calculation of confidence intervals are based upon the method of Fay and Feuer
[50].

I chose to analyze data for patients who were diagnosed in the same year (2000, for instance),
rather than those born in the same year (a birth-cohort). Different factors could distort either data
set. Birth-cohort analysis is significantly distorted by changes in medical practice and diagnostic
technology. On the other hand, changes in environmental carcinogens may distort period analysis
[43-45], like the data presented here. Detection technology for the carcinomas presented here
have dramatically improved over the past 50 years. Hence, I focus on patients diagnosed in a
single year, while recognizing that their environmental exposure may be different.

Model Comparison I used SEER-17 colon carcinoma data from 2000 for both men and women.
This gave cancer cases and population under surveillance by individual years. I excluded those
ages where fewer than ten cases were observed, ages less than 30. The data then included 22,344
cases in patients from 30 to 84 years of age, 55 independent data points. I tested the hypothesis
that each was consistent with the data by first determining the parameters using the maximum
likelihood method, then determining the goodness-of-fit by minimizing the x? value.
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