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Abstract

The anatomy of model species is described in
ontologies, which are used to standardize the
annotations of experimental data, such as gene
expression patterns. To compare such data between
species, we aim to establish homology relations
between ontologies describing different species. We
present a new algorithm, and its implementation in
the software Homolonto, to create new relationships
between anatomical ontologies, based on the
homology concept. These relationships and the

Homolonto software are available at
http://bgee.unil.ch/
Introduction

To be able to compare biological data, we need to use
ontologies, to ensure that a biological concept is
unambiguously associated to a unique identifier. To
achieve this, ontologies such as the Gene Ontology'
are increasingly used. Websites dedicated to model
species also rely on the use of ontologies, for
example the zebrafish anatomy for ZFIN? or the
Mouse gross anatomy and development’.

We are interested in integrating and comparing gene
expression patterns between several species’. This
raises the question of encoding corresponding
information between ontologies which describe
different anatomies (e.g. zebrafish and human). The
most widely accepted criterion to make such
comparisons in biology is homology’. Homology is
classically defined as the relation between structures
which derive from a same ancestral structure,
although other definitions are discussed. It should be
noted that the exact definition is up to the user,
whose input will define which pairs of terms are
defined as homologous.

To apply this concept in practice, hundreds of terms
must be compared between ontologies. Although a
purely manual annotation of homologies is possible,
it would be too time consuming to be done for all
terms between several divergent species. Kruger et
al.® used a manual approach to find similarities
between simplified anatomy ontologies for human
and mouse. There is also an on-going effort to
integrate anatomical ontologies, the Common
Anatomy Reference Ontology project CARO’.
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Since the problem of aligning anatomical ontologies
is to find correspondences between the concepts of
two ontologies, we draw on methods from "schema
matching", or "ontology alignment"*. Ontology
alignment is the process of determining
correspondences between ontology concepts. Usually,
this technique is used to find the common concepts
present in two ontologies. In the case of anatomical
ontologies, the concepts to align are not strictly
common, but rather, related: a homology relationship
is not an equivalence relationship. For this reason,
ontology alignment approaches developed for other
applications (e.g. medicine oriented descriptions of
human® '*) cannot be applied as such: these methods
would be misled by the existence of elements of
same names and related to the same concept, but not
homologous (e.g. eye of insects and of vertebrates),
or reciprocally, homologous elements with different
names (e.g. pectoral fin and upper limb).

We present here a new algorithm, and its
implementation in the Java software Homolonto, to
create new relationships between anatomical

ontologies, based on the homology concept. Thus the
basic aim of Homolonto is to propose in priority to
the user the best candidate pairs of homologs, and
avoid the need to consider many irrelevant pairs.

Homolonto Algorithm

1) Computing word specific scores: Score modifiers
are computed for all words of the ontologies being
aligned. Each word present at least once in both
ontologies being aligned (O1 and O2) is given a
score modifier based on its number of occurrences
f(word, O):

Mod(word, Oi) = 1/(1+log10(f(word, O1))) eq. I
Mod(word) = Mod(word, O1) *Mod(word, O2) eq. 2

2) Starting list of propositions: To initialize the
algorithm we define first obvious similarities
between the terms of the ontologies to align. Based
on the assumption that two structures that have the
same name are likely homologous, the initial
propositions are formed of terms with identical
names. In this process, we also consider the synonym
field of the terms. Each pair of names nl, n2, is given
a base score, dependent on the words shared:

Base_score(nl, n2) = base homonymy score *
max(Mod(word)) * [n1~n2| / max(jnl|, |n2|) eq. 3



Where |n| is the number of words in n, [n1Nn2| is the
number of words shared by nl and n2, and
max(Mod(word)) is computed over all shared words.
In the starting list, [n1Nn2| = |n1| = |n2| by definition,
but this is not the case at further iterations of the
algorithm.

3) Initial propagation step: The score of these
propositions is propagated between neighbors. This
initial propagation is bidirectional, and limited to
already defined propositions. For example, the score
of the "optic cup" pair is added to the score of the
"eye" pair, as "optic cup" is part of "eye", and both
pairs are initial propositions. Symmetrically the score
of the "eye" pair is added to the "optic cup" pair. But
the score of "eye" is not propagated to e.g. the
pairing of "visual system" (ZFA’ parent of "eye")
with "sensory organ" (EHDAA'" " parent of "eye"),
because this pair is not an initial proposition. The aim
of this step is to increase the score of the most likely
homologs.

4) Cleaning the initial proposition list: The design of
some ontologies may generate many false positives,
typically through repetition of the same name as a
child of diverse structures (e.g. 76 occurrences of
"mesenchyme" in EHDAA). To avoid this, if a term
is a member of several propositions with different
scores, we initially keep only the best scoring
proposition. If there are more than 5 highest scoring
propositions for a given term, we remove all
propositions for this term.

5) Evaluation step.: Each proposition is presented to
the user, in descending order of scores. The user has
to validate, invalidate, or delay decision regarding the
proposed homology.

6) Computation step: If one of the terms of a
validated pair is already a member of an homology
group, then the other term is added to the homology
group. Otherwise, a new homology group is created,
containing both terms of the validated pair. The
information of homology is propagated through the
hierarchy by the use of a validated homology score
(eq. 4). The underlying idea is that if two terms A and
B are homologous, then one of the children of A is
probably homologous to one of the children of B.
During the propagation the validated homology score
is added to the base score (eq. 3) of pairs of terms:

Propagated_score(a, b) = validated_homology_score
* (max_depth + 1 - present_depth) / (max_depth + 1)

eq. 4

Total score(a, b) =
Base_score(n,, ny)

Propagated score(a,
eq. 5a

b) +

Where n, is the name of term a. In the present
implementation, the max depth is 1, and the
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validated homology score is 1.5 times the base
homonymy score. For pairs of terms which are not
yet a proposition, a new proposition is created, and
the base score is computed. This will include cases of
partial homonymy, for which eq. 3 down weights
names which share a lower proportion of words.
Pairs which have been previously invalidated by the
user will not receive a propagated score, and will
remain invalidated.

To down weight potential false positives due to
validation of terms with many children, the
propagated score is reduced proportionally to the
number of new propositions for each term of the
ontology to align (eq. 5b).

Total _score(a, b;) = Propagated_score(a, b;)/ ((jb| + 1)
*2) + Base_score(n,, ny;) eq. 5b

Where a is a term of the ontology to align, b; is a
term of the reference ontology, and |b| is the number
of new propositions for term a. When a proposition
(a, by is invalidated, |b| is updated, and the Total
score(a, b;) increases for the remaining propositions.

When the terms of an invalidated proposition share
common words, then the score modifiers of all shared
words is diminished (eq. 6). As this is repeated,
words which tend to generate false positives will be
increasingly down weighted.

Mod'(word) = Mod(word) * 0.9  eq. 6

7) Iteration: Evaluation of propositions (step 5),
ordered by total score (base score + propagated
score), and computation (step 6), is repeated until the
user decides to terminate, or no more propositions are
generated.

Homolonto Results

Homolonto has been used to align six anatomical
ontologies to date, representing four vertebrate
species (human and mouse have different ontologies
for adult and embryonic stages). We will present
more in detail two alignments: zebrafish (ZFA
ontology?) / Xenopus (XAO ontology”), which
illustrates a best case scenario of two recently
updated ontologies, conforming to the CARO
standards’, with annotations of synonyms and
definitions, and low redundancy. And human
(EHDAA ontology' "*) / mouse (EMAPA ontology""
%) which, despite the similarity in anatomy, illustrates
a more difficult scenario of large ontologies, with
issues such as repetition of names (76 occurrences of
"mesenchyme" in human, 93 in mouse), due to
splitting of concepts among morphological structures
or among developmental stages.



The main observation is that our algorithm is
successful at ordering propositions. In the "easy" case
of zebrafish / Xenopus, there are only seven
invalidated propositions in the first 150 (95%
validation). This is followed by a relatively short
interval of iterations where validated and invalidated
propositions are mixed: 46% of validations between
iterations 151 and 200, and 20% between 201 and
250. Further iterations generate mostly invalidated
propositions (3% validation from 251 to 735). Thus
93% of all validations occurred in the first 250
iterations.

The pattern is similar for the human / mouse
alignment. In the first 1400 iterations, 99% of
propositions are validated. In the next 600 iterations,
the figure reduces to 63%, and in the last 962
iterations it falls to 21%. This slower decrease
illustrates the complexity of this alignment. The
validation rate of 66% shows that the propositions
were mostly worth considering, and that the high
number of propositions was due indeed to the size of
the ontologies, not to a default in the algorithm.
Results also show that manual expertise is necessary,
since even in the high scoring propositions some are
invalid. Overall, 27% of invalidations are pairs of
terms with identical names. Interestingly, Homolonto
manages to give these misleading homonyms low
priority: homonyms within the first 1000 iterations
have a 99% chance of being homologs, whereas
homonyms within the last 1000 iterations only have a
19% chance of being homologs. Thus 93% of
invalidated homonyms appear after iteration 1400.

Generating Relationships
Homologs

between Groups of

Homolonto is used to generate pairwise homology
relationships between anatomical ontologies. As
homology relationships are transitive, these pairwise
alignments can be merged into homologous organs
groups (HOGs). Homolonto thus generates HOGs,
and mapping of species-specific anatomical structures
to these HOGs. HOGs then need to be structured as
an ontology to allow reasoning on them. This means
that, at a minimum, relationships amongst them have
to be designed. Another algorithm has thus been
developed to infer relationships between HOGs.

1) Initial Step: all possible paths between HOGs are
retrieved. For instance, if an anatomical structure "a",
mapped to the HOG "A", has a part of relationship
to the anatomical structure "b", mapped to the HOG
"B", then a putative part of relationship is defined
between HOGs "A" and "B".

Relationships between HOGs are often indirect (e.g.

nan

structure "a", mapped to HOG "A", part_of structure
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"c", part_of structure "b", mapped to HOG "B"). If
the first relation (the relation "outgoing" from the
child HOG, "A" in the previous example) and the last
relation (the relation “incoming” to the parent HOG,
"B" in the previous example) are of the same type
(e.g. part _of, is_a), then the putative relationship is
defined as this type. Otherwise, the relationship is
defined as the SKOS™" type broader than.

2) Skipping relations from not-trusted ontologies:
some ontologies do not follow the OBO principles,
and implement for instance only one type of relation
amongst all concepts (e.g. EV" only uses is a
relationships). The user may choose to not use these
ontologies to define relation types. All the putative
relations inferred by these ontologies at step 1 are
then set as broader_than. But the final relation type
between these HOGs can still be inferred thanks to
other ontologies.

3) Skipping relations defined by too few species: if
the proportion of species defining a relation,
compared to the total number of species involved in
the creation of the HOGs, is below a threshold
defined by the user ("species coverage"), then the
relation is defined to the type broader than, and the
algorithm stops examining relations between these
HOGs. Indeed, in such case, inferred relation types
may not be trusted.

4) Defining within-ontology agreement. several
anatomical structures from the same ontology can
belong to the same HOG. This can generate a within-
ontology conflict for defining a relation type. For
instance, structures "a" and "b" allow to define a
putative part of relationship between HOGs "A" and
"B", while structures "a’" and "b’", belonging to the
same ontology, define a putative is_a relationship
between these HOGs. The algorithm then calculates,
for each relation type, the proportion that the number
of paths defining this relation type represents,
compared to the total number of paths between these
two HOGs for this ontology. If, for a type, this
proportion exceeds a threshold ("within-ontology
agreement"), defined by the user and at least greater
than 0.5, then this relation type is attributed for this
species between these HOGs. Otherwise, the relation
is defined to the type broader_than for this ontology.

5) Defining inter-ontology agreement: different
ontologies can define different relation types between
two related HOGs. This conflict is resolved in the
same way as at step 4, by using a threshold ("inter-
ontology agreement"), defined by the user and at
least greater than 0.5.

6) Removing cyclic relationships: by inferring
automatically the relationships between HOGs, cycles



may be generated (e.g. HOG "A" part of HOG "B"
part_of HOG "A"), whereas the ontology has to be
acyclic. If such cycles are detected, the algorithm
stops with an error message prompting the user to
make a decision: the user has then to manually
remove one of the involved relationships.

7) Removing redundancies: if several relationships
are redundant, only the deepest relationship is
conserved; for instance, if a HOG "A" has two
substructures by a part_of relationship, "B" and "C",
and if "C" is also a substructure of "B", then the
direct relationship between the HOGs "A" and "C" is
removed.

8) Curation step: a curator has then to manually
review all the broader than relations, to attribute
them to a type defined by the OBO Relation
Ontology'. Some custom relationships, not inferred
by the algorithm, can also be added at this step.

Conclusion

To date, the use of Homolonto, followed by a
curation process, allowed to define 1004 HOGs,
involving 4088 structures from 6 anatomical
ontologies (ZFA?, EHDAA"™ 2, EV®, EMAPA" 2,
MA", and XAO").

The algorithm to design relationships amongst the
HOGs inferred 1188 relations. With the more
stringent parameters (species coverage = 1, within-
ontology agreement = 1, inter-ontology agreement =
1), 341 of them are defined as part_of, all the others
as broader_than. The curation step to review these
broader_than relations is currently under process.

The HOG ontology has been successfully
implemented into Bgee*, a database for studying gene
expression evolution, and already allows to perform
automated, cross-species, gene expression pattern
comparisons.

The Homolonto software and source code, and the
HOG ontology, are available from the download
section of the Bgee website (http://bgee.unil.ch). The
algorithm to generate relationships between groups
of homologs will be available soon.
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