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Abstract

Brilliant Blue is often used to trace water movement in soils. Its concentration in soil samples is usually
determined by extraction — a laborious procedure with varying accuracy. We show that Brilliant Blue
can be estimated directly by visible diffuse reflectance spectroscopy. We build a PLSR (partial least
squares regression) model for the concentration range of 0.1 to 15 mg Brilliant Blue per g soil with an
RMSE (root mean square error of prediction) of 1 mg g™ and an Rzadj of 0.9. However, as the method is
based on visible spectra, prediction accuracy can be altered by variations in soil colour between
calibration and prediction data sets.

Introduction

Water flow and solute transport in soils are complex phenomena. Usually, water chooses certain
preferred pathways through the soil and bypasses a large portion of the profile (e.g. Flury et al., 1994).
This type of flow is called preferential flow and is hardly predictable. Often visualising preferential flow
in tracer studies is the best way to study it. Brilliant Blue FCF (C37H34N;Na;O9S3, molar mass 792.9 g
mol™) is an artificial organic dye frequently used in soil hydrology to trace water movement in soils and
to identify preferential flow paths. In a tracer study, an aqueous solution of the dye is evenly applied at
the soil surface by an automated sprinkler. Then vertical soil profiles are excavated to uncover
infiltration patterns of the stained water. These patterns are photographed and used to determine
concentration maps of Brilliant Blue to understand water and solute transport in soils (e.g. Forrer et al.,
1999).

Preferential flow of water can affect soil chemistry and biology. Several authors identified
preferential flow paths in Brilliant Blue tracer studies and analysed the content of total and organic C
and N (Hagedorn et al., 1999; Bundt et al., 2001a; Bundt et al., 2001b). They showed that soil matrix
and preferential flow paths differed in their physical, chemical and biological properties. The sorption of
the dye on soil particles during infiltration of the tracer solution changes the C and N contents of the
soil. Therefore, the concentration of Brilliant Blue in the soil has to be determined and the additional
amounts of C and N due to the dye have to be subtracted.

To sum up, the estimation of Brilliant Blue concentrations in soil is a crucial step. Usually, the
quantity of the dye is determined by extraction with a water acetone solution or a 0.5 M K,SOj4 (e.g.
Bundt et al., 2001a). This is a laborious procedure with changing accuracy due to varying mass recovery
(Forrer et al., 2000). We propose to estimate the content of Brilliant Blue by visible diffuse reflectance
spectroscopy (VIS-DRS) directly on soil samples without extraction.
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Materials and methods

Soils

We took soil material on an agricultural field at the experimental site of INRA Avignon, France
(43°54'58.76"N, 4°52'54.81"E), and in a Norway spruce forest in the Fichtelgebirge in south-eastern
Germany (50° 08'N, 11°52'E). The soil at the first site is a highly structured Calcisol (IUSS Working
Group WRB, WRB, 2007) with a homogenously greyish yellow colour (Oyama & Takehara, 1999)
throughout the profile. Due to its high clay content it develops deep fissures during desiccation. These
cracks can reach one meter and more and traverse the plough pan situated in about 25-30 cm depth. The
forest soil is a Podzol (IUSS Working Group WRB, WRB, 2007) with five different horizons. The soil
colour varies considerably between horizons from greyish yellow brown to light yellow. Table 1
summarizes the distribution of the soil fine fraction (soil particles <2 mm) and the soil colour.

Table 1: Soil characteristics.

Horizon or

Site depth (cm) Sand (%) Silt (%) Clay (%) Colour’ Colour name'
0-30 5.18 48.35 46.47 2.5Y 6/2 greyish yellow
I* 30-60 4.94 48.14 46.93 2.5Y 6/2 greyish yellow
60-100 15.53 47.63 36.85 2.5Y 6/2 greyish yellow
Ea 43.16 48.47 8.37 10YR 5/2  greyish yellow brown
Bsh 38.63 51.48 9.90 10YR 4/2  greyish yellow brown
I Bs 33.94 50.38 15.69 10YR 4/4  brown
Bw 31.61 54.53 13.87 2.5Y 7/4 light yellow
Bw/C 36.62 49.71 13.67 2.5Y 7/4 light yellow

Tdetermined on dry samples according to Oyama & Tekahara (1999); *agricultural site; “forest site

Sample preparation and measurements

We prepared 40 calibration samples from site one (calibration set I) and 65 from site two
(calibration set II) by mixing five g of sieved soil (< 2 mm) with 5 ml of Brilliant Blue solution with
different concentrations. The final concentration of the dye for every depth or horizon ranged from about
0.1 to about 15 mg g™ soil for calibration set I and from 0.1 to about 10 mg g™ soil for calibration set II.
After mixing the soil with the Brilliant Blue solution the samples were dried at 40°C and ground. Two
independent data sets of 20 samples each from site I (validation set I) and from site II (validation set II)
were prepared in the same way.

Visible diffuse reflectance spectra of the soil samples were collected using a Cricket accessory
(Harrick Scientific Products) installed in a Cary 100 Conc UV-VIS spectrometer (Varian). An aliquot of
a ground sample was scanned between 400 to 700 nm in 1 nm steps averaging 10 measurements per
step. Then, a baseline correction procedure was applied:

Raw spectrum — 0%Transmission
Corrected spectrum =

100%Transmission — 0%Transmission

where 0%Transmission is the zero reference baseline collected with the sample beam covered and the
100%Transmission is the spectrum collected on spectralon (100% reflectance reference). Spectra were
recorded in reflectance units (R) and transformed to absorbance units, i.e. log (1/R).
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Partial least squares regression

In order to estimate the content of Brilliant Blue in soil samples, we need a model relating soil
spectra to the concentration of the dye. Partial least squares regression is a multivariate linear regression
technique particularly suitable when predicting a dependent variable from a large number of
independent (possibly collinear) variables. We used the software ParLes (Viscarra Rossel, 2008) that
allows multivariate calibration and prediction based on partial least squares regression combined with
bootstrap aggregation (bagging-PLSR). For an introduction to PLSR the reader is referred to Geladi &
Kowalski (1986). During bagging, the calibration data set is repeatedly sampled with replacement and a
PLSR model is calculated for each of these subsamples. Then, a mean predictor with confidence
intervals can be derived. A tutorial on bootstrapping for chemical application can be found in Wehrens
et al. (2000). Viscarra Rossel (2007) showed that bagging improved the robustness of PLSR, was less
susceptible to overfitting and led to more accurate models while providing a measure for model
uncertainty.

Prior to calibration, soil spectra were mean centred and smoothed with a wavelet filter. To choose
the number of factors to use in the PLSR model, a leave-one-out cross validation was performed. The
accuracy of the cross validation is measured by the root mean squared error of prediction (RMSE):

RMSE = Jﬁi(yi -9,

i=l
where N is the number of samples Y; the observed value, ¥, the predicted one. The optimal number of

factors, i.e. the parsimonious model is chosen based on the corrected Akaike’s Information Criterion
(AIC,) (Sugiura, 1978):

2K(K +1)

N-K-1

where N is the number of samples and K the number of factors. The model that represents an ‘elbow’ in

the scree plot (AIC, versus number of factors curve) is chosen. Some further measures to assess the
goodness of the model are the bias (BIAS):

1 &,
BlAS:ﬁZ(yi—yi)

i=1

AIC, = N In(RMSE?) + 2K +

the standard deviation of the error distribution (SDE):

N

2 (9 - yi)-BIASY

SDE = |-

N -1
and RPD — the ratio of the standard deviation of the data to the RMSE.

Results and discussion

Calibration and validation

The diffuse spectra show a maximum of absorption at about 630 nm which corresponds to the
Brilliant Blue absorption maximum (e.g. Forrer (1997)). The second smaller peak of the Brilliant Blue
absorption spectrum is situated at about 430 nm (Figure 1).

The leave-one-out cross validation indicated a model with 4 factors for calibration set I and a model
with 6 factors for calibration set II (Figure 2). The first 4 factors account for 95.61% of variation in the
Brilliant Blue concentrations and 99.99% of variation in the spectra of calibration set I. In the calibration
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set 11, the model explained 95.17% of variation in the Brilliant Blue concentrations and 99.99% of
variation in the spectra. The leave-one-out validation statistics are similar for the two calibration sets.
The RMSE of about 1 mg g" and an Rzadj of 0.94 indicate good models (Table 2). The fitted versus
observed values plots did not show any non linearity (Figure 3). In the calibration set I, one point with a
high residual was detected, but it did not deteriorate the RMSE of the validation.

400 450 500 550 600 650 700

Wavelength/nm

Q
— -
I
So
AN
o |
o
S -
0
<o
c? i
—— Ea50mg g -—— Bw/C48mg g
1 ---- Bsh4.3mg g’ 0-305.1mg g’
o | Bs5.5mg g | 30-605.3mg g’
- | Bw4.6mg g’ 60-1004.9mg g
|

Figure 1: Soil visible diffuse spectra with about 5 mg Brilliant Blue per g soil.
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Figure 2: Evolution of the corrected Akaike’s Information Criterion (AIC.) with increasing number of factors; (a)
calibration set I and (b) calibration set II.

Table 2: Statistics of the calibration procedure based on leave-one-out cross validation.

Calibration set RMSE' (mg g™) Rzadj BIAS (mg g™) SDE* (mg g™) RPD*

I 1.29 0.94 -0.01 1.31 4.04
II 0.82 0.94 -0.01 0.82 4.10

"Root mean square error of prediction; *Standard deviation of the error distribution; ‘Ratio of the standard deviation of
the data to the RMSE
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The statistics of the leave-one-out cross validation and the independent validation are comparable
(Fehler! Ungiltiger Eigenverweis auf Textmarke.). Validation set I gave an RMSE of 1.09 mg g and an R? adj
of 0.95. For validation of set II we obtained an RMSE of 0.98 mg g and an R adj of 0.87. All depths in
validation set I and horizons in validation set II were equally well predicted (Figure 4).

Table 3: Statistics of the validation procedure.

Validation set RMSE' (mg g7 R’ BIAS (mgg)) SDE* (mg g RPD®
I 1.09 (0.83, 1.59)7 095 —0.15 1.11 4.57
11 0.98 (0.74, 1.43)1 087 —0.14 1.00 2.87

"Root mean square error of prediction; *Standard deviation of the error distribution; ‘Ratio of the standard deviation of
the data to the RMSE; 195% confidence interval
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Figure 3: Results of the leave-one-out cross validation; (a) calibration set I and (b) calibration set II.
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Figure 4: Results of the independent validation; (a) calibration set I and (b) calibration set II.

Robustness

To infer the robustness of the models, we calculated the concentrations of Brilliant Blue in
validation set I usmg the calibration set Il and vice versa. Using the same PLSR models as described
above yielded an R adj 0f 0.22, an RMSE of 13.51 mg g’ "and a BIAS of -10.66 mg g for validation set
II. Prediction for cahbra‘uon set I based on cahbratlon set II was better, leading an R? adj of 0.87, an
RMSE of 2.94 mg g and a BIAS of 1.65 mg g'. This deterioration of prediction ability is probably due
to variations in soil colour, as the concentration range of Brilliant Blue is similar in both calibration sets.
Soil colour must be considered as a nuisance parameter that changes the hue of samples with the same
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concentration of Brilliant Blue, thus affecting their VIS diffuse spectra. To deal with this problem a
regression model with both spectral and designed variables including additional information like horizon
or soil colour could be applied (Jorgensen et al., 2004). However, this is ongoing research and outside of
the scope of this short paper.

To improve prediction we combined both calibration sets and built a new model. The pre-
processing of the spectra had to be adjusted to account for a more heterogeneous data set. In addition to
wavelet smoothing and mean-centring we applied a wavelet detrending and calculated the first
derivative. Wavelet detrending is often used to correct baseline shifts or to remove curvilinearity in the
spectra (Viscarra Rossel et al., 2007). The prediction of both validation sets together was satisfactory
and gave an Rzadj of 0.88, an RMSE of 1.34 mg g’ and a BIAS of 0.11 mg g™

Conclusions

Rapid and accurate estimation of Brilliant Blue by diffuse reflectance spectroscopy is possible.
However, the accuracy of prediction can be altered when soil colour varies between calibration and
prediction data sets.
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